There are many conceivable ways to map 58edo onto the Lumatone keyboard. Unfortunately, as it has multiple rings of 5ths, the Standard Lumatone mapping for Pythagorean is not one of them, and due to it's size, would not cover the whole gamut even if it was. Instead, the 2L 8s diaschismic mapping is probably the most intuitive way of providing access to all intervals while putting well-tuned ones close together if you're used to playing 12edo.
19
24
28
33
38
43
48
32
37
42
47
52
57
4
9
41
46
51
56
3
8
13
18
23
28
33
45
50
55
2
7
12
17
22
27
32
37
42
47
52
54
1
6
11
16
21
26
31
36
41
46
51
56
3
8
13
18
0
5
10
15
20
25
30
35
40
45
50
55
2
7
12
17
22
27
32
37
9
14
19
24
29
34
39
44
49
54
1
6
11
16
21
26
31
36
41
46
51
56
3
13
18
23
28
33
38
43
48
53
0
5
10
15
20
25
30
35
40
45
50
55
2
7
12
17
22
27
32
37
42
47
52
57
4
9
14
19
24
29
34
39
44
49
54
1
6
11
16
21
26
31
36
41
46
46
51
56
3
8
13
18
23
28
33
38
43
48
53
0
5
10
15
20
25
30
35
40
45
50
55
12
17
22
27
32
37
42
47
52
57
4
9
14
19
24
29
34
39
44
49
54
1
6
31
36
41
46
51
56
3
8
13
18
23
28
33
38
43
48
53
0
5
10
55
2
7
12
17
22
27
32
37
42
47
52
57
4
9
14
19
16
21
26
31
36
41
46
51
56
3
8
13
18
23
40
45
50
55
2
7
12
17
22
27
32
1
6
11
16
21
26
31
36
25
30
35
40
45
44
49
However, this results in a range barely over 3 octaves, which may be compositionally limiting.
The 6L 2s Echidna mapping has fewer repeated notes while still providing the full gamut, giving you a range almost as large as the standard mapping. (This mapping, like many others, is available from the Lumatone Facebook group.)
54
4
1
9
17
25
33
56
6
14
22
30
38
46
54
3
11
19
27
35
43
51
1
9
17
25
0
8
16
24
32
40
48
56
6
14
22
30
38
46
5
13
21
29
37
45
53
3
11
19
27
35
43
51
1
9
17
2
10
18
26
34
42
50
0
8
16
24
32
40
48
56
6
14
22
30
38
7
15
23
31
39
47
55
5
13
21
29
37
45
53
3
11
19
27
35
43
51
1
9
4
12
20
28
36
44
52
2
10
18
26
34
42
50
0
8
16
24
32
40
48
56
6
14
22
30
17
25
33
41
49
57
7
15
23
31
39
47
55
5
13
21
29
37
45
53
3
11
19
27
35
43
51
1
38
46
54
4
12
20
28
36
44
52
2
10
18
26
34
42
50
0
8
16
24
32
40
48
56
6
9
17
25
33
41
49
57
7
15
23
31
39
47
55
5
13
21
29
37
45
53
3
11
30
38
46
54
4
12
20
28
36
44
52
2
10
18
26
34
42
50
0
8
1
9
17
25
33
41
49
57
7
15
23
31
39
47
55
5
13
22
30
38
46
54
4
12
20
28
36
44
52
2
10
51
1
9
17
25
33
41
49
57
7
15
14
22
30
38
46
54
4
12
43
51
1
9
17
6
14
Other good options include 7L 3s Hemififths
2
9
5
12
19
26
33
1
8
15
22
29
36
43
50
4
11
18
25
32
39
46
53
2
9
16
0
7
14
21
28
35
42
49
56
5
12
19
26
33
3
10
17
24
31
38
45
52
1
8
15
22
29
36
43
50
57
57
6
13
20
27
34
41
48
55
4
11
18
25
32
39
46
53
2
9
16
2
9
16
23
30
37
44
51
0
7
14
21
28
35
42
49
56
5
12
19
26
33
40
56
5
12
19
26
33
40
47
54
3
10
17
24
31
38
45
52
1
8
15
22
29
36
43
50
57
8
15
22
29
36
43
50
57
6
13
20
27
34
41
48
55
4
11
18
25
32
39
46
53
2
9
16
23
25
32
39
46
53
2
9
16
23
30
37
44
51
0
7
14
21
28
35
42
49
56
5
12
19
26
49
56
5
12
19
26
33
40
47
54
3
10
17
24
31
38
45
52
1
8
15
22
29
8
15
22
29
36
43
50
57
6
13
20
27
34
41
48
55
4
11
18
25
32
39
46
53
2
9
16
23
30
37
44
51
0
7
14
21
28
49
56
5
12
19
26
33
40
47
54
3
10
17
24
15
22
29
36
43
50
57
6
13
20
27
32
39
46
53
2
9
16
23
56
5
12
19
26
15
22
5L 3s Buzzard, although this occasionally skips a step.
9
20
10
21
32
43
54
0
11
22
33
44
55
8
19
1
12
23
34
45
56
9
20
31
42
53
49
2
13
24
35
46
57
10
21
32
43
54
7
18
50
3
14
25
36
47
0
11
22
33
44
55
8
19
30
41
52
40
51
4
15
26
37
48
1
12
23
34
45
56
9
20
31
42
53
6
17
41
52
5
16
27
38
49
2
13
24
35
46
57
10
21
32
43
54
7
18
29
40
51
31
42
53
6
17
28
39
50
3
14
25
36
47
0
11
22
33
44
55
8
19
30
41
52
5
16
43
54
7
18
29
40
51
4
15
26
37
48
1
12
23
34
45
56
9
20
31
42
53
6
17
28
39
50
8
19
30
41
52
5
16
27
38
49
2
13
24
35
46
57
10
21
32
43
54
7
18
29
40
51
42
53
6
17
28
39
50
3
14
25
36
47
0
11
22
33
44
55
8
19
30
41
52
7
18
29
40
51
4
15
26
37
48
1
12
23
34
45
56
9
20
31
42
41
52
5
16
27
38
49
2
13
24
35
46
57
10
21
32
43
6
17
28
39
50
3
14
25
36
47
0
11
22
33
40
51
4
15
26
37
48
1
12
23
34
5
16
27
38
49
2
13
24
39
50
3
14
25
4
15
Or if you don't mind the smaller range and want to more easily exploit narrow intervals, 2L 12s Harry (as in Lumatone mapping for harry)
40
44
45
49
53
57
3
46
50
54
0
4
8
12
16
51
55
1
5
9
13
17
21
25
29
33
52
56
2
6
10
14
18
22
26
30
34
38
42
46
57
3
7
11
15
19
23
27
31
35
39
43
47
51
55
1
5
0
4
8
12
16
20
24
28
32
36
40
44
48
52
56
2
6
10
14
18
5
9
13
17
21
25
29
33
37
41
45
49
53
57
3
7
11
15
19
23
27
31
35
6
10
14
18
22
26
30
34
38
42
46
50
54
0
4
8
12
16
20
24
28
32
36
40
44
48
15
19
23
27
31
35
39
43
47
51
55
1
5
9
13
17
21
25
29
33
37
41
45
49
53
57
3
7
28
32
36
40
44
48
52
56
2
6
10
14
18
22
26
30
34
38
42
46
50
54
0
4
8
12
45
49
53
57
3
7
11
15
19
23
27
31
35
39
43
47
51
55
1
5
9
13
17
0
4
8
12
16
20
24
28
32
36
40
44
48
52
56
2
6
10
14
18
17
21
25
29
33
37
41
45
49
53
57
3
7
11
15
19
23
30
34
38
42
46
50
54
0
4
8
12
16
20
24
47
51
55
1
5
9
13
17
21
25
29
2
6
10
14
18
22
26
30
19
23
27
31
35
32
36