93edt
Jump to navigation
Jump to search
Prime factorization
3 × 31
Step size
20.4511¢
Octave
59\93edt (1206.62¢)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 92edt | 93edt | 94edt → |
93 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 93edt or 93ed3), is a nonoctave tuning system that divides the interval of 3/1 into 93 equal parts of about 20.5 ¢ each. Each step represents a frequency ratio of 31/93, or the 93rd root of 3.
Intervals
Steps | Cents | Hekts | Approximate ratios |
---|---|---|---|
0 | 0 | 0 | 1/1 |
1 | 20.5 | 14 | |
2 | 40.9 | 28 | |
3 | 61.4 | 41.9 | 30/29 |
4 | 81.8 | 55.9 | 21/20, 22/21, 43/41 |
5 | 102.3 | 69.9 | 35/33 |
6 | 122.7 | 83.9 | 29/27 |
7 | 143.2 | 97.8 | 25/23, 38/35 |
8 | 163.6 | 111.8 | 11/10 |
9 | 184.1 | 125.8 | 10/9 |
10 | 204.5 | 139.8 | |
11 | 225 | 153.8 | 33/29 |
12 | 245.4 | 167.7 | 15/13, 38/33 |
13 | 265.9 | 181.7 | 7/6 |
14 | 286.3 | 195.7 | |
15 | 306.8 | 209.7 | 31/26, 37/31 |
16 | 327.2 | 223.7 | 35/29 |
17 | 347.7 | 237.6 | 11/9 |
18 | 368.1 | 251.6 | 21/17, 26/21 |
19 | 388.6 | 265.6 | |
20 | 409 | 279.6 | 19/15 |
21 | 429.5 | 293.5 | |
22 | 449.9 | 307.5 | 35/27 |
23 | 470.4 | 321.5 | 38/29 |
24 | 490.8 | 335.5 | |
25 | 511.3 | 349.5 | 39/29 |
26 | 531.7 | 363.4 | |
27 | 552.2 | 377.4 | |
28 | 572.6 | 391.4 | |
29 | 593.1 | 405.4 | 31/22, 38/27 |
30 | 613.5 | 419.4 | |
31 | 634 | 433.3 | 13/9 |
32 | 654.4 | 447.3 | 19/13 |
33 | 674.9 | 461.3 | 31/21 |
34 | 695.3 | 475.3 | |
35 | 715.8 | 489.2 | |
36 | 736.2 | 503.2 | 26/17 |
37 | 756.7 | 517.2 | 31/20 |
38 | 777.1 | 531.2 | |
39 | 797.6 | 545.2 | |
40 | 818 | 559.1 | |
41 | 838.5 | 573.1 | |
42 | 858.9 | 587.1 | 41/25 |
43 | 879.4 | 601.1 | |
44 | 899.8 | 615.1 | 37/22 |
45 | 920.3 | 629 | 17/10 |
46 | 940.8 | 643 | 31/18, 43/25 |
47 | 961.2 | 657 | |
48 | 981.7 | 671 | 30/17, 37/21 |
49 | 1002.1 | 684.9 | 41/23 |
50 | 1022.6 | 698.9 | |
51 | 1043 | 712.9 | |
52 | 1063.5 | 726.9 | 37/20 |
53 | 1083.9 | 740.9 | 43/23 |
54 | 1104.4 | 754.8 | |
55 | 1124.8 | 768.8 | |
56 | 1145.3 | 782.8 | |
57 | 1165.7 | 796.8 | |
58 | 1186.2 | 810.8 | |
59 | 1206.6 | 824.7 | |
60 | 1227.1 | 838.7 | |
61 | 1247.5 | 852.7 | 35/17, 37/18, 39/19 |
62 | 1268 | 866.7 | 27/13 |
63 | 1288.4 | 880.6 | |
64 | 1308.9 | 894.6 | |
65 | 1329.3 | 908.6 | 41/19 |
66 | 1349.8 | 922.6 | |
67 | 1370.2 | 936.6 | |
68 | 1390.7 | 950.5 | 29/13, 38/17 |
69 | 1411.1 | 964.5 | |
70 | 1431.6 | 978.5 | |
71 | 1452 | 992.5 | |
72 | 1472.5 | 1006.5 | |
73 | 1492.9 | 1020.4 | |
74 | 1513.4 | 1034.4 | |
75 | 1533.8 | 1048.4 | 17/7 |
76 | 1554.3 | 1062.4 | 27/11 |
77 | 1574.7 | 1076.3 | |
78 | 1595.2 | 1090.3 | |
79 | 1615.6 | 1104.3 | |
80 | 1636.1 | 1118.3 | 18/7 |
81 | 1656.5 | 1132.3 | 13/5 |
82 | 1677 | 1146.2 | 29/11 |
83 | 1697.4 | 1160.2 | |
84 | 1717.9 | 1174.2 | 27/10 |
85 | 1738.3 | 1188.2 | 30/11, 41/15 |
86 | 1758.8 | 1202.2 | |
87 | 1779.2 | 1216.1 | |
88 | 1799.7 | 1230.1 | |
89 | 1820.2 | 1244.1 | 20/7 |
90 | 1840.6 | 1258.1 | 29/10 |
91 | 1861.1 | 1272 | |
92 | 1881.5 | 1286 | |
93 | 1902 | 1300 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +6.62 | +0.00 | -7.22 | -4.96 | +6.62 | +5.61 | -0.60 | +0.00 | +1.66 | +0.26 | -7.22 |
Relative (%) | +32.4 | +0.0 | -35.3 | -24.3 | +32.4 | +27.4 | -2.9 | +0.0 | +8.1 | +1.3 | -35.3 | |
Steps (reduced) |
59 (59) |
93 (0) |
117 (24) |
136 (43) |
152 (59) |
165 (72) |
176 (83) |
186 (0) |
195 (9) |
203 (17) |
210 (24) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.63 | -8.22 | -4.96 | +6.02 | +3.32 | +6.62 | -5.18 | +8.27 | +5.61 | +6.88 | -8.73 |
Relative (%) | -12.9 | -40.2 | -24.3 | +29.4 | +16.2 | +32.4 | -25.3 | +40.5 | +27.4 | +33.6 | -42.7 | |
Steps (reduced) |
217 (31) |
223 (37) |
229 (43) |
235 (49) |
240 (54) |
245 (59) |
249 (63) |
254 (68) |
258 (72) |
262 (76) |
265 (79) |