93edt
Jump to navigation
Jump to search
Prime factorization
3 × 31
Step size
20.4511¢
Octave
59\93edt (1206.62¢)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 92edt | 93edt | 94edt → |
93 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 93edt or 93ed3), is a nonoctave tuning system that divides the interval of 3/1 into 93 equal parts of about 20.5 ¢ each. Each step represents a frequency ratio of 31/93, or the 93rd root of 3.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 20.451 | |
2 | 40.902 | |
3 | 61.353 | 30/29 |
4 | 81.805 | 21/20, 22/21, 43/41 |
5 | 102.256 | 35/33 |
6 | 122.707 | 29/27 |
7 | 143.158 | 25/23, 38/35 |
8 | 163.609 | 11/10 |
9 | 184.06 | 10/9 |
10 | 204.511 | |
11 | 224.962 | 33/29 |
12 | 245.414 | 15/13, 38/33 |
13 | 265.865 | 7/6 |
14 | 286.316 | |
15 | 306.767 | 31/26, 37/31 |
16 | 327.218 | 35/29 |
17 | 347.669 | 11/9 |
18 | 368.12 | 21/17, 26/21 |
19 | 388.571 | |
20 | 409.023 | 19/15 |
21 | 429.474 | |
22 | 449.925 | 35/27 |
23 | 470.376 | 38/29 |
24 | 490.827 | |
25 | 511.278 | 39/29 |
26 | 531.729 | |
27 | 552.18 | |
28 | 572.632 | |
29 | 593.083 | 31/22, 38/27 |
30 | 613.534 | |
31 | 633.985 | 13/9 |
32 | 654.436 | 19/13 |
33 | 674.887 | 31/21 |
34 | 695.338 | |
35 | 715.79 | |
36 | 736.241 | 26/17 |
37 | 756.692 | 31/20 |
38 | 777.143 | |
39 | 797.594 | |
40 | 818.045 | |
41 | 838.496 | |
42 | 858.947 | 41/25 |
43 | 879.399 | |
44 | 899.85 | 37/22 |
45 | 920.301 | 17/10 |
46 | 940.752 | 31/18, 43/25 |
47 | 961.203 | |
48 | 981.654 | 30/17, 37/21 |
49 | 1002.105 | 41/23 |
50 | 1022.556 | |
51 | 1043.008 | |
52 | 1063.459 | 37/20 |
53 | 1083.91 | 43/23 |
54 | 1104.361 | |
55 | 1124.812 | |
56 | 1145.263 | |
57 | 1165.714 | |
58 | 1186.165 | |
59 | 1206.617 | |
60 | 1227.068 | |
61 | 1247.519 | 35/17, 37/18, 39/19 |
62 | 1267.97 | 27/13 |
63 | 1288.421 | |
64 | 1308.872 | |
65 | 1329.323 | 41/19 |
66 | 1349.775 | |
67 | 1370.226 | |
68 | 1390.677 | 29/13, 38/17 |
69 | 1411.128 | |
70 | 1431.579 | |
71 | 1452.03 | |
72 | 1472.481 | |
73 | 1492.932 | |
74 | 1513.384 | |
75 | 1533.835 | 17/7 |
76 | 1554.286 | 27/11 |
77 | 1574.737 | |
78 | 1595.188 | |
79 | 1615.639 | |
80 | 1636.09 | 18/7 |
81 | 1656.541 | 13/5 |
82 | 1676.993 | 29/11 |
83 | 1697.444 | |
84 | 1717.895 | 27/10 |
85 | 1738.346 | 30/11, 41/15 |
86 | 1758.797 | |
87 | 1779.248 | |
88 | 1799.699 | |
89 | 1820.15 | 20/7 |
90 | 1840.602 | 29/10 |
91 | 1861.053 | |
92 | 1881.504 | |
93 | 1901.955 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +6.62 | +0.00 | -7.22 | -4.96 | +6.62 | +5.61 | -0.60 | +0.00 | +1.66 | +0.26 | -7.22 |
Relative (%) | +32.4 | +0.0 | -35.3 | -24.3 | +32.4 | +27.4 | -2.9 | +0.0 | +8.1 | +1.3 | -35.3 | |
Steps (reduced) |
59 (59) |
93 (0) |
117 (24) |
136 (43) |
152 (59) |
165 (72) |
176 (83) |
186 (0) |
195 (9) |
203 (17) |
210 (24) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.63 | -8.22 | -4.96 | +6.02 | +3.32 | +6.62 | -5.18 | +8.27 | +5.61 | +6.88 | -8.73 |
Relative (%) | -12.9 | -40.2 | -24.3 | +29.4 | +16.2 | +32.4 | -25.3 | +40.5 | +27.4 | +33.6 | -42.7 | |
Steps (reduced) |
217 (31) |
223 (37) |
229 (43) |
235 (49) |
240 (54) |
245 (59) |
249 (63) |
254 (68) |
258 (72) |
262 (76) |
265 (79) |