94edt
Jump to navigation
Jump to search
Prime factorization
2 × 47
Step size
20.2336¢
Octave
59\94edt (1193.78¢)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 93edt | 94edt | 95edt → |
94 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 94edt or 94ed3), is a nonoctave tuning system that divides the interval of 3/1 into 94 equal parts of about 20.2 ¢ each. Each step represents a frequency ratio of 31/94, or the 94th root of 3.
Intervals
Steps | Cents | Hekts | Approximate ratios |
---|---|---|---|
0 | 0 | 0 | 1/1 |
1 | 20.2 | 13.8 | |
2 | 40.5 | 27.7 | |
3 | 60.7 | 41.5 | 30/29 |
4 | 80.9 | 55.3 | 22/21, 43/41 |
5 | 101.2 | 69.1 | 18/17, 35/33 |
6 | 121.4 | 83 | 29/27 |
7 | 141.6 | 96.8 | 38/35 |
8 | 161.9 | 110.6 | |
9 | 182.1 | 124.5 | 10/9 |
10 | 202.3 | 138.3 | |
11 | 222.6 | 152.1 | 33/29 |
12 | 242.8 | 166 | 23/20, 38/33 |
13 | 263 | 179.8 | |
14 | 283.3 | 193.6 | 20/17 |
15 | 303.5 | 207.4 | |
16 | 323.7 | 221.3 | 35/29 |
17 | 344 | 235.1 | |
18 | 364.2 | 248.9 | 21/17, 37/30 |
19 | 384.4 | 262.8 | |
20 | 404.7 | 276.6 | |
21 | 424.9 | 290.4 | 23/18 |
22 | 445.1 | 304.3 | 22/17 |
23 | 465.4 | 318.1 | 17/13, 38/29 |
24 | 485.6 | 331.9 | 41/31 |
25 | 505.8 | 345.7 | |
26 | 526.1 | 359.6 | |
27 | 546.3 | 373.4 | 37/27 |
28 | 566.5 | 387.2 | 43/31 |
29 | 586.8 | 401.1 | |
30 | 607 | 414.9 | 27/19 |
31 | 627.2 | 428.7 | 33/23 |
32 | 647.5 | 442.6 | |
33 | 667.7 | 456.4 | |
34 | 687.9 | 470.2 | |
35 | 708.2 | 484 | |
36 | 728.4 | 497.9 | 35/23 |
37 | 748.6 | 511.7 | |
38 | 768.9 | 525.5 | |
39 | 789.1 | 539.4 | 30/19 |
40 | 809.3 | 553.2 | |
41 | 829.6 | 567 | 21/13 |
42 | 849.8 | 580.9 | 31/19 |
43 | 870 | 594.7 | 38/23 |
44 | 890.3 | 608.5 | |
45 | 910.5 | 622.3 | 22/13 |
46 | 930.7 | 636.2 | 12/7 |
47 | 951 | 650 | |
48 | 971.2 | 663.8 | 7/4 |
49 | 991.4 | 677.7 | 39/22 |
50 | 1011.7 | 691.5 | |
51 | 1031.9 | 705.3 | |
52 | 1052.1 | 719.1 | |
53 | 1072.4 | 733 | 13/7 |
54 | 1092.6 | 746.8 | |
55 | 1112.8 | 760.6 | 19/10 |
56 | 1133.1 | 774.5 | |
57 | 1153.3 | 788.3 | 35/18, 37/19 |
58 | 1173.5 | 802.1 | |
59 | 1193.8 | 816 | |
60 | 1214 | 829.8 | |
61 | 1234.2 | 843.6 | |
62 | 1254.5 | 857.4 | 31/15 |
63 | 1274.7 | 871.3 | 23/11 |
64 | 1294.9 | 885.1 | 19/9 |
65 | 1315.2 | 898.9 | |
66 | 1335.4 | 912.8 | |
67 | 1355.6 | 926.6 | |
68 | 1375.9 | 940.4 | |
69 | 1396.1 | 954.3 | |
70 | 1416.3 | 968.1 | 43/19 |
71 | 1436.6 | 981.9 | 39/17 |
72 | 1456.8 | 995.7 | |
73 | 1477.1 | 1009.6 | |
74 | 1497.3 | 1023.4 | |
75 | 1517.5 | 1037.2 | |
76 | 1537.8 | 1051.1 | 17/7 |
77 | 1558 | 1064.9 | |
78 | 1578.2 | 1078.7 | |
79 | 1598.5 | 1092.6 | |
80 | 1618.7 | 1106.4 | |
81 | 1638.9 | 1120.2 | |
82 | 1659.2 | 1134 | |
83 | 1679.4 | 1147.9 | 29/11 |
84 | 1699.6 | 1161.7 | |
85 | 1719.9 | 1175.5 | 27/10 |
86 | 1740.1 | 1189.4 | 41/15 |
87 | 1760.3 | 1203.2 | |
88 | 1780.6 | 1217 | |
89 | 1800.8 | 1230.9 | 17/6 |
90 | 1821 | 1244.7 | 43/15 |
91 | 1841.3 | 1258.5 | 29/10 |
92 | 1861.5 | 1272.3 | |
93 | 1881.7 | 1286.2 | |
94 | 1902 | 1300 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -6.22 | +0.00 | +7.79 | +5.92 | -6.22 | -10.05 | +1.57 | +0.00 | -0.30 | -3.44 | +7.79 |
Relative (%) | -30.7 | +0.0 | +38.5 | +29.2 | -30.7 | -49.7 | +7.8 | +0.0 | -1.5 | -17.0 | +38.5 | |
Steps (reduced) |
59 (59) |
94 (0) |
119 (25) |
138 (44) |
153 (59) |
166 (72) |
178 (84) |
188 (0) |
197 (9) |
205 (17) |
213 (25) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -9.38 | +3.96 | +5.92 | -4.65 | -8.43 | -6.22 | +1.35 | -6.52 | -10.05 | -9.66 | -5.68 |
Relative (%) | -46.3 | +19.6 | +29.2 | -23.0 | -41.7 | -30.7 | +6.6 | -32.2 | -49.7 | -47.7 | -28.1 | |
Steps (reduced) |
219 (31) |
226 (38) |
232 (44) |
237 (49) |
242 (54) |
247 (59) |
252 (64) |
256 (68) |
260 (72) |
264 (76) |
268 (80) |