94edt
Jump to navigation
Jump to search
Prime factorization
2 × 47
Step size
20.2336¢
Octave
59\94edt (1193.78¢)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 93edt | 94edt | 95edt → |
94 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 94edt or 94ed3), is a nonoctave tuning system that divides the interval of 3/1 into 94 equal parts of about 20.2 ¢ each. Each step represents a frequency ratio of 31/94, or the 94th root of 3.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 20.234 | |
2 | 40.467 | |
3 | 60.701 | 30/29 |
4 | 80.934 | 22/21, 43/41 |
5 | 101.168 | 18/17, 35/33 |
6 | 121.401 | 29/27 |
7 | 141.635 | 38/35 |
8 | 161.869 | |
9 | 182.102 | 10/9 |
10 | 202.336 | |
11 | 222.569 | 33/29 |
12 | 242.803 | 23/20, 38/33 |
13 | 263.036 | |
14 | 283.27 | 20/17 |
15 | 303.503 | |
16 | 323.737 | 35/29 |
17 | 343.971 | |
18 | 364.204 | 21/17, 37/30 |
19 | 384.438 | |
20 | 404.671 | |
21 | 424.905 | 23/18 |
22 | 445.138 | 22/17 |
23 | 465.372 | 17/13, 38/29 |
24 | 485.606 | 41/31 |
25 | 505.839 | |
26 | 526.073 | |
27 | 546.306 | 37/27 |
28 | 566.54 | 43/31 |
29 | 586.773 | |
30 | 607.007 | 27/19 |
31 | 627.24 | 33/23 |
32 | 647.474 | |
33 | 667.708 | |
34 | 687.941 | |
35 | 708.175 | |
36 | 728.408 | 35/23 |
37 | 748.642 | |
38 | 768.875 | |
39 | 789.109 | 30/19 |
40 | 809.343 | |
41 | 829.576 | 21/13 |
42 | 849.81 | 31/19 |
43 | 870.043 | 38/23 |
44 | 890.277 | |
45 | 910.51 | 22/13 |
46 | 930.744 | 12/7 |
47 | 950.978 | |
48 | 971.211 | 7/4 |
49 | 991.445 | 39/22 |
50 | 1011.678 | |
51 | 1031.912 | |
52 | 1052.145 | |
53 | 1072.379 | 13/7 |
54 | 1092.612 | |
55 | 1112.846 | 19/10 |
56 | 1133.08 | |
57 | 1153.313 | 35/18, 37/19 |
58 | 1173.547 | |
59 | 1193.78 | |
60 | 1214.014 | |
61 | 1234.247 | |
62 | 1254.481 | 31/15 |
63 | 1274.715 | 23/11 |
64 | 1294.948 | 19/9 |
65 | 1315.182 | |
66 | 1335.415 | |
67 | 1355.649 | |
68 | 1375.882 | |
69 | 1396.116 | |
70 | 1416.349 | 43/19 |
71 | 1436.583 | 39/17 |
72 | 1456.817 | |
73 | 1477.05 | |
74 | 1497.284 | |
75 | 1517.517 | |
76 | 1537.751 | 17/7 |
77 | 1557.984 | |
78 | 1578.218 | |
79 | 1598.452 | |
80 | 1618.685 | |
81 | 1638.919 | |
82 | 1659.152 | |
83 | 1679.386 | 29/11 |
84 | 1699.619 | |
85 | 1719.853 | 27/10 |
86 | 1740.086 | 41/15 |
87 | 1760.32 | |
88 | 1780.554 | |
89 | 1800.787 | 17/6 |
90 | 1821.021 | 43/15 |
91 | 1841.254 | 29/10 |
92 | 1861.488 | |
93 | 1881.721 | |
94 | 1901.955 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -6.22 | +0.00 | +7.79 | +5.92 | -6.22 | -10.05 | +1.57 | +0.00 | -0.30 | -3.44 | +7.79 |
Relative (%) | -30.7 | +0.0 | +38.5 | +29.2 | -30.7 | -49.7 | +7.8 | +0.0 | -1.5 | -17.0 | +38.5 | |
Steps (reduced) |
59 (59) |
94 (0) |
119 (25) |
138 (44) |
153 (59) |
166 (72) |
178 (84) |
188 (0) |
197 (9) |
205 (17) |
213 (25) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -9.38 | +3.96 | +5.92 | -4.65 | -8.43 | -6.22 | +1.35 | -6.52 | -10.05 | -9.66 | -5.68 |
Relative (%) | -46.3 | +19.6 | +29.2 | -23.0 | -41.7 | -30.7 | +6.6 | -32.2 | -49.7 | -47.7 | -28.1 | |
Steps (reduced) |
219 (31) |
226 (38) |
232 (44) |
237 (49) |
242 (54) |
247 (59) |
252 (64) |
256 (68) |
260 (72) |
264 (76) |
268 (80) |