95edt
Jump to navigation
Jump to search
Prime factorization
5 × 19
Step size
20.0206¢
Octave
60\95edt (1201.23¢) (→12\19edt)
Consistency limit
10
Distinct consistency limit
10
← 94edt | 95edt | 96edt → |
Division of the third harmonic into 95 equal parts (95EDT) is related to 60 edo (tenth-tone tuning), but with the 3/1 rather than the 2/1 being just. The octave is about 1.2347 cents stretched and the step size is about 20.0206 cents.
Lookalikes: 60edo, 139ed5, 155ed6, 35edf
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 20.021 | |
2 | 40.041 | 42/41, 43/42 |
3 | 60.062 | 29/28, 30/29 |
4 | 80.082 | 22/21, 43/41 |
5 | 100.103 | 18/17, 35/33 |
6 | 120.123 | 15/14 |
7 | 140.144 | 13/12 |
8 | 160.165 | 34/31 |
9 | 180.185 | 10/9, 41/37 |
10 | 200.206 | 37/33 |
11 | 220.226 | 25/22, 42/37 |
12 | 240.247 | 23/20, 31/27 |
13 | 260.268 | 36/31, 43/37 |
14 | 280.288 | 20/17 |
15 | 300.309 | 25/21 |
16 | 320.329 | |
17 | 340.35 | 28/23, 39/32 |
18 | 360.37 | 16/13 |
19 | 380.391 | |
20 | 400.412 | 29/23, 34/27 |
21 | 420.432 | 37/29 |
22 | 440.453 | 31/24, 40/31 |
23 | 460.473 | 30/23, 43/33 |
24 | 480.494 | 29/22, 33/25, 37/28 |
25 | 500.514 | 4/3 |
26 | 520.535 | 27/20 |
27 | 540.556 | 26/19, 41/30 |
28 | 560.576 | 29/21 |
29 | 580.597 | 7/5 |
30 | 600.617 | 17/12, 41/29 |
31 | 620.638 | 43/30 |
32 | 640.659 | 29/20, 42/29 |
33 | 660.679 | 22/15, 41/28 |
34 | 680.7 | 37/25, 40/27, 43/29 |
35 | 700.72 | 3/2 |
36 | 720.741 | 41/27 |
37 | 740.761 | 23/15, 43/28 |
38 | 760.782 | 31/20 |
39 | 780.803 | 11/7 |
40 | 800.823 | 27/17 |
41 | 820.844 | 37/23 |
42 | 840.864 | 13/8 |
43 | 860.885 | 23/14 |
44 | 880.905 | |
45 | 900.926 | 32/19, 37/22 |
46 | 920.947 | 17/10 |
47 | 940.967 | 31/18, 43/25 |
48 | 960.988 | |
49 | 981.008 | 30/17, 37/21 |
50 | 1001.029 | 41/23 |
51 | 1021.05 | |
52 | 1041.07 | 31/17, 42/23 |
53 | 1061.091 | 24/13 |
54 | 1081.111 | 28/15, 43/23 |
55 | 1101.132 | 17/9 |
56 | 1121.152 | 21/11 |
57 | 1141.173 | 29/15 |
58 | 1161.194 | 43/22 |
59 | 1181.214 | |
60 | 1201.235 | 2/1 |
61 | 1221.255 | |
62 | 1241.276 | 41/20, 43/21 |
63 | 1261.296 | 29/14 |
64 | 1281.317 | |
65 | 1301.338 | 36/17 |
66 | 1321.358 | 15/7 |
67 | 1341.379 | |
68 | 1361.399 | |
69 | 1381.42 | 20/9 |
70 | 1401.441 | 9/4 |
71 | 1421.461 | 25/11 |
72 | 1441.482 | 23/10 |
73 | 1461.502 | |
74 | 1481.523 | 40/17 |
75 | 1501.543 | |
76 | 1521.564 | 41/17 |
77 | 1541.585 | 39/16 |
78 | 1561.605 | 32/13, 37/15 |
79 | 1581.626 | |
80 | 1601.646 | |
81 | 1621.667 | |
82 | 1641.687 | 31/12 |
83 | 1661.708 | |
84 | 1681.729 | 37/14 |
85 | 1701.749 | |
86 | 1721.77 | 27/10 |
87 | 1741.79 | 41/15 |
88 | 1761.811 | 36/13 |
89 | 1781.832 | 14/5 |
90 | 1801.852 | 17/6 |
91 | 1821.873 | 43/15 |
92 | 1841.893 | 29/10 |
93 | 1861.914 | 41/14 |
94 | 1881.934 | |
95 | 1901.955 | 3/1 |
Harmonics
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | -3.45 | -5.37 | +0.00 | -7.06 | +4.04 | -3.45 | +0.09 | +7.73 | -5.37 | -2.70 |
Relative (%) | +0.0 | -17.2 | -26.8 | +0.0 | -35.3 | +20.2 | -17.2 | +0.4 | +38.6 | -26.8 | -13.5 | |
Steps (reduced) |
95 (0) |
139 (44) |
168 (73) |
190 (0) |
207 (17) |
222 (32) |
234 (44) |
245 (55) |
255 (65) |
263 (73) |
271 (81) |
Harmonic | 25 | 27 | 29 | 31 | 33 | 35 | 37 | 39 | 41 | 43 | 45 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -6.91 | +0.00 | -3.59 | +1.08 | -7.06 | -8.82 | -4.92 | +4.04 | -2.46 | -4.83 | -3.45 |
Relative (%) | -34.5 | +0.0 | -17.9 | +5.4 | -35.3 | -44.1 | -24.6 | +20.2 | -12.3 | -24.1 | -17.2 | |
Steps (reduced) |
278 (88) |
285 (0) |
291 (6) |
297 (12) |
302 (17) |
307 (22) |
312 (27) |
317 (32) |
321 (36) |
325 (40) |
329 (44) |