95edt

From Xenharmonic Wiki
Jump to navigation Jump to search
← 94edt 95edt 96edt →
Prime factorization 5 × 19
Step size 20.0206¢ 
Octave 60\95edt (1201.23¢) (→12\19edt)
Consistency limit 10
Distinct consistency limit 10

Division of the third harmonic into 95 equal parts (95EDT) is related to 60 edo (tenth-tone tuning), but with the 3/1 rather than the 2/1 being just. The octave is about 1.2347 cents stretched and the step size is about 20.0206 cents.

Lookalikes: 60edo, 139ed5, 155ed6, 35edf

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 20 13.7
2 40 27.4 42/41, 43/42
3 60.1 41.1 29/28, 30/29
4 80.1 54.7 22/21, 43/41
5 100.1 68.4 18/17, 35/33
6 120.1 82.1 15/14
7 140.1 95.8 13/12
8 160.2 109.5 34/31
9 180.2 123.2 10/9, 41/37
10 200.2 136.8 37/33
11 220.2 150.5 25/22, 42/37
12 240.2 164.2 23/20, 31/27
13 260.3 177.9 36/31, 43/37
14 280.3 191.6 20/17
15 300.3 205.3 25/21
16 320.3 218.9
17 340.3 232.6 28/23, 39/32
18 360.4 246.3 16/13
19 380.4 260
20 400.4 273.7 29/23, 34/27
21 420.4 287.4 37/29
22 440.5 301.1 31/24, 40/31
23 460.5 314.7 30/23, 43/33
24 480.5 328.4 29/22, 33/25, 37/28
25 500.5 342.1 4/3
26 520.5 355.8 27/20
27 540.6 369.5 26/19, 41/30
28 560.6 383.2 29/21
29 580.6 396.8 7/5
30 600.6 410.5 17/12, 41/29
31 620.6 424.2 43/30
32 640.7 437.9 29/20, 42/29
33 660.7 451.6 22/15, 41/28
34 680.7 465.3 37/25, 40/27, 43/29
35 700.7 478.9 3/2
36 720.7 492.6 41/27
37 740.8 506.3 23/15, 43/28
38 760.8 520 31/20
39 780.8 533.7 11/7
40 800.8 547.4 27/17
41 820.8 561.1 37/23
42 840.9 574.7 13/8
43 860.9 588.4 23/14
44 880.9 602.1
45 900.9 615.8 32/19, 37/22
46 920.9 629.5 17/10
47 941 643.2 31/18, 43/25
48 961 656.8
49 981 670.5 30/17, 37/21
50 1001 684.2 41/23
51 1021 697.9
52 1041.1 711.6 31/17, 42/23
53 1061.1 725.3 24/13
54 1081.1 738.9 28/15, 43/23
55 1101.1 752.6 17/9
56 1121.2 766.3 21/11
57 1141.2 780 29/15
58 1161.2 793.7 43/22
59 1181.2 807.4
60 1201.2 821.1 2/1
61 1221.3 834.7
62 1241.3 848.4 41/20, 43/21
63 1261.3 862.1 29/14
64 1281.3 875.8
65 1301.3 889.5 36/17
66 1321.4 903.2 15/7
67 1341.4 916.8
68 1361.4 930.5
69 1381.4 944.2 20/9
70 1401.4 957.9 9/4
71 1421.5 971.6 25/11
72 1441.5 985.3 23/10
73 1461.5 998.9
74 1481.5 1012.6 40/17
75 1501.5 1026.3
76 1521.6 1040 41/17
77 1541.6 1053.7 39/16
78 1561.6 1067.4 32/13, 37/15
79 1581.6 1081.1
80 1601.6 1094.7
81 1621.7 1108.4
82 1641.7 1122.1 31/12
83 1661.7 1135.8
84 1681.7 1149.5 37/14
85 1701.7 1163.2
86 1721.8 1176.8 27/10
87 1741.8 1190.5 41/15
88 1761.8 1204.2 36/13
89 1781.8 1217.9 14/5
90 1801.9 1231.6 17/6
91 1821.9 1245.3 43/15
92 1841.9 1258.9 29/10
93 1861.9 1272.6 41/14
94 1881.9 1286.3
95 1902 1300 3/1

Harmonics

Approximation of prime harmonics in 95edt
Harmonic 2 3 5 7 11 13 17 19 23
Error Absolute (¢) +1.23 +0.00 -3.45 -5.37 -7.06 +4.04 +0.09 +7.73 -2.70
Relative (%) +6.2 +0.0 -17.2 -26.8 -35.3 +20.2 +0.4 +38.6 -13.5
Steps
(reduced)
60
(60)
95
(0)
139
(44)
168
(73)
207
(17)
222
(32)
245
(55)
255
(65)
271
(81)
Approximation of odd harmonics in 95edt
Harmonic 25 27 29 31 33 35 37 39 41 43 45
Error Absolute (¢) -6.91 +0.00 -3.59 +1.08 -7.06 -8.82 -4.92 +4.04 -2.46 -4.83 -3.45
Relative (%) -34.5 +0.0 -17.9 +5.4 -35.3 -44.1 -24.6 +20.2 -12.3 -24.1 -17.2
Steps
(reduced)
278
(88)
285
(0)
291
(6)
297
(12)
302
(17)
307
(22)
312
(27)
317
(32)
321
(36)
325
(40)
329
(44)