95edt

From Xenharmonic Wiki
Jump to navigation Jump to search
← 94edt 95edt 96edt →
Prime factorization 5 × 19
Step size 20.0206 ¢ 
Octave 60\95edt (1201.23 ¢) (→ 12\19edt)
Consistency limit 10
Distinct consistency limit 10

95 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 95edt or 95ed3), is a nonoctave tuning system that divides the interval of 3/1 into 95 equal parts of about 20 ¢ each. Each step represents a frequency ratio of 31/95, or the 95th root of 3.

Theory

95edt is related to 60edo (tenth-tone tuning), but with the perfect twelfth rather than the octave being just. The octave is about 1.23 cents stretched. Like 60edo, 95edt is consistent to the 10-integer-limit. While it tunes prime 2 and 13 sharp, the 5 and 7 remain flat but less so, and the 17 is practically pure, which may be seen as an improvement in intonation over 60edo.

Harmonics

Approximation of harmonics in 95edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +1.23 +0.00 +2.47 -3.45 +1.23 -5.37 +3.70 +0.00 -2.22 -7.06 +2.47
Relative (%) +6.2 +0.0 +12.3 -17.2 +6.2 -26.8 +18.5 +0.0 -11.1 -35.3 +12.3
Steps
(reduced)
60
(60)
95
(0)
120
(25)
139
(44)
155
(60)
168
(73)
180
(85)
190
(0)
199
(9)
207
(17)
215
(25)
Approximation of harmonics in 95edt (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) +4.04 -4.13 -3.45 +4.94 +0.09 +1.23 +7.73 -0.98 -5.37 -5.82 -2.70 +3.70
Relative (%) +20.2 -20.6 -17.2 +24.7 +0.4 +6.2 +38.6 -4.9 -26.8 -29.1 -13.5 +18.5
Steps
(reduced)
222
(32)
228
(38)
234
(44)
240
(50)
245
(55)
250
(60)
255
(65)
259
(69)
263
(73)
267
(77)
271
(81)
275
(85)

Subsets and supersets

Since 95 factors into primes as 5 × 19, 95edt has subset edt's 5edt and 19edt.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 20 13.7
2 40 27.4 42/41, 43/42
3 60.1 41.1 29/28, 30/29
4 80.1 54.7 22/21, 43/41
5 100.1 68.4 18/17, 35/33
6 120.1 82.1 15/14
7 140.1 95.8 13/12
8 160.2 109.5 34/31
9 180.2 123.2 10/9, 41/37
10 200.2 136.8 37/33
11 220.2 150.5 25/22, 42/37
12 240.2 164.2 23/20, 31/27
13 260.3 177.9 36/31, 43/37
14 280.3 191.6 20/17
15 300.3 205.3 25/21
16 320.3 218.9
17 340.3 232.6 28/23, 39/32
18 360.4 246.3 16/13
19 380.4 260
20 400.4 273.7 29/23, 34/27
21 420.4 287.4 37/29
22 440.5 301.1 31/24, 40/31
23 460.5 314.7 30/23, 43/33
24 480.5 328.4 29/22, 33/25, 37/28
25 500.5 342.1 4/3
26 520.5 355.8 27/20
27 540.6 369.5 26/19, 41/30
28 560.6 383.2 29/21
29 580.6 396.8 7/5
30 600.6 410.5 17/12, 41/29
31 620.6 424.2 43/30
32 640.7 437.9 29/20, 42/29
33 660.7 451.6 22/15, 41/28
34 680.7 465.3 37/25, 40/27, 43/29
35 700.7 478.9 3/2
36 720.7 492.6 41/27
37 740.8 506.3 23/15, 43/28
38 760.8 520 31/20
39 780.8 533.7 11/7
40 800.8 547.4 27/17
41 820.8 561.1 37/23
42 840.9 574.7 13/8
43 860.9 588.4 23/14
44 880.9 602.1
45 900.9 615.8 32/19, 37/22
46 920.9 629.5 17/10
47 941 643.2 31/18, 43/25
48 961 656.8
49 981 670.5 30/17, 37/21
50 1001 684.2 41/23
51 1021 697.9
52 1041.1 711.6 31/17, 42/23
53 1061.1 725.3 24/13
54 1081.1 738.9 28/15, 43/23
55 1101.1 752.6 17/9
56 1121.2 766.3 21/11
57 1141.2 780 29/15
58 1161.2 793.7 43/22
59 1181.2 807.4
60 1201.2 821.1 2/1
61 1221.3 834.7
62 1241.3 848.4 41/20, 43/21
63 1261.3 862.1 29/14
64 1281.3 875.8
65 1301.3 889.5 36/17
66 1321.4 903.2 15/7
67 1341.4 916.8
68 1361.4 930.5
69 1381.4 944.2 20/9
70 1401.4 957.9 9/4
71 1421.5 971.6 25/11
72 1441.5 985.3 23/10
73 1461.5 998.9
74 1481.5 1012.6 40/17
75 1501.5 1026.3
76 1521.6 1040 41/17
77 1541.6 1053.7 39/16
78 1561.6 1067.4 32/13, 37/15
79 1581.6 1081.1
80 1601.6 1094.7
81 1621.7 1108.4
82 1641.7 1122.1 31/12
83 1661.7 1135.8
84 1681.7 1149.5 37/14
85 1701.7 1163.2
86 1721.8 1176.8 27/10
87 1741.8 1190.5 41/15
88 1761.8 1204.2 36/13
89 1781.8 1217.9 14/5
90 1801.9 1231.6 17/6
91 1821.9 1245.3 43/15
92 1841.9 1258.9 29/10
93 1861.9 1272.6 41/14
94 1881.9 1286.3
95 1902 1300 3/1

See also