139ed5

From Xenharmonic Wiki
Jump to navigation Jump to search
← 138ed5 139ed5 140ed5 →
Prime factorization 139 (prime)
Step size 20.0454¢ 
Octave 60\139ed5 (1202.73¢)
Twelfth 95\139ed5 (1904.32¢)
Consistency limit 9
Distinct consistency limit 9

139 equal divisions of the 5th harmonic (abbreviated 139ed5) is a nonoctave tuning system that divides the interval of 5/1 into 139 equal parts of about 20⁠ ⁠¢ each. Each step represents a frequency ratio of 51/139, or the 139th root of 5.

It is similar to 60edo, but with the octave (2/1) being stretched by about 2.7 cents, and with the interval 5/1 being just, instead of 2/1 being just.

Harmonics

On harmonics 2.3.5.7.11, 60edo has 0%, 10%, 32%, 44% and 43% relative error.

On those same harmonics, 139ed5 has 14%, 12%, 0%, 6% and 10% relative error.

This is a large improvement relative to the step size of the tuning, and is the main reason why a composer might choose to use 139ed5.

Approximation of prime harmonics in 139ed5
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +2.73 +2.36 +0.00 -1.19 -1.92 +9.56 +6.17 -5.98 +4.04 +3.64 +8.45
Relative (%) +13.6 +11.8 +0.0 -6.0 -9.6 +47.7 +30.8 -29.8 +20.1 +18.2 +42.2
Steps
(reduced)
60
(60)
95
(95)
139
(0)
168
(29)
207
(68)
222
(83)
245
(106)
254
(115)
271
(132)
291
(13)
297
(19)


60edo for comparison:

Approximation of prime harmonics in 60edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 -1.96 -6.31 -8.83 +8.68 -0.53 -4.96 +2.49 -8.27 -9.58 -5.04
Relative (%) +0.0 -9.8 -31.6 -44.1 +43.4 -2.6 -24.8 +12.4 -41.4 -47.9 -25.2
Steps
(reduced)
60
(0)
95
(35)
139
(19)
168
(48)
208
(28)
222
(42)
245
(5)
255
(15)
271
(31)
291
(51)
297
(57)

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 20
2 40.1 42/41, 43/42, 44/43, 45/44
3 60.1 29/28, 30/29
4 80.2 22/21, 45/43
5 100.2 18/17, 35/33
6 120.3 15/14
7 140.3 51/47
8 160.4 34/31, 45/41
9 180.4
10 200.5 46/41
11 220.5 25/22, 42/37
12 240.5 23/20, 31/27, 54/47
13 260.6 43/37, 50/43
14 280.6 20/17, 47/40
15 300.7 25/21, 44/37
16 320.7
17 340.8 28/23
18 360.8 16/13
19 380.9
20 400.9 29/23
21 421 37/29, 51/40
22 441 40/31, 49/38
23 461 30/23, 47/36
24 481.1 33/25, 37/28
25 501.1
26 521.2 27/20, 50/37
27 541.2 41/30
28 561.3 47/34
29 581.3 7/5
30 601.4 17/12
31 621.4
32 641.5 42/29
33 661.5 22/15, 41/28
34 681.5 40/27, 43/29
35 701.6 3/2
36 721.6 41/27, 44/29, 47/31
37 741.7 23/15, 43/28
38 761.7 45/29
39 781.8 11/7
40 801.8 27/17
41 821.9 37/23, 45/28
42 841.9 13/8
43 862 51/31
44 882
45 902
46 922.1 46/27
47 942.1 31/18, 50/29
48 962.2 54/31
49 982.2 30/17, 37/21
50 1002.3 25/14, 41/23
51 1022.3
52 1042.4 42/23
53 1062.4 24/13
54 1082.5 43/23
55 1102.5 17/9
56 1122.5 44/23
57 1142.6 29/15
58 1162.6 45/23, 47/24
59 1182.7
60 1202.7
61 1222.8
62 1242.8 41/20
63 1262.9
64 1282.9 21/10
65 1303
66 1323
67 1343 50/23
68 1363.1
69 1383.1 20/9
70 1403.2 9/4
71 1423.2
72 1443.3 23/10
73 1463.3
74 1483.4 33/14
75 1503.4 31/13, 50/21
76 1523.5 41/17
77 1543.5 39/16
78 1563.5 37/15
79 1583.6
80 1603.6
81 1623.7 23/9
82 1643.7 31/12
83 1663.8 34/13
84 1683.8 37/14, 45/17
85 1703.9
86 1723.9 46/17
87 1744
88 1764 36/13
89 1784 14/5
90 1804.1 17/6
91 1824.1 43/15
92 1844.2 29/10
93 1864.2 44/15, 47/16
94 1884.3
95 1904.3
96 1924.4
97 1944.4 40/13
98 1964.5 28/9
99 1984.5
100 2004.5 35/11
101 2024.6 29/9
102 2044.6
103 2064.7
104 2084.7 10/3
105 2104.8 27/8
106 2124.8
107 2144.9 38/11
108 2164.9
109 2185
110 2205 25/7
111 2225 47/13
112 2245.1
113 2265.1 37/10
114 2285.2
115 2305.2
116 2325.3 23/6
117 2345.3 31/8
118 2365.4 51/13
119 2385.4
120 2405.5
121 2425.5
122 2445.5
123 2465.6 54/13
124 2485.6 21/5
125 2505.7 17/4
126 2525.7 43/10
127 2545.8
128 2565.8 22/5
129 2585.9 49/11
130 2605.9
131 2626 41/9
132 2646
133 2666 14/3
134 2686.1 33/7
135 2706.1 43/9
136 2726.2 29/6
137 2746.2 44/9
138 2766.3
139 2786.3 5/1