35edf

From Xenharmonic Wiki
Jump to: navigation, search

Division of the just perfect fifth into 35 equal parts (35EDF) is related to 60 edo, but with the 3/2 rather than the 2/1 being just. The octave is about 3.3514 cents stretched and the step size is about 20.0559 cents (corresponding to 59.8329 edo, practically identical to every sixth step of 359edo). The patent val has a generally sharp tendency for harmonics up to 18, with the exception for 13. Unlike 60edo, it is only consistent up to the 7-integer-limit, with discrepancy for the 8th harmonic (three octaves).

Lookalikes: 60edo, 95edt

Intervals

degrees of 60edo cents value approximate ratios in the 2.3.5.13 subgroup additional ratios of 7 and 11 (assuming flat values for primes)
0
1 20.0559 81/80
2 40.1117
3 60.1676 28/27, 27/26
4 80.2234 21/20
5 100.2793
6 120.3351 16/15
7 140.391
8 160.4469 12/11, 11/10
9 180.5027 10/9
10 200.5586 9/8
11 220.6144
12 240.6703 15/13 8/7
13 260.7621 7/6
14 280.782
15 300.8379
16 320.8937 6/5
17 340.9496 11/9
18 361.0054 16/13
19 381.0613 5/4
20 401.1171
21 421.173 14/11
22 441.2289 9/7
23 461.2847 13/10
24 481.3406
25 501.3964 4/3
26 521.4523
27 541.5081 11/8, 15/11
28 561.564 18/13
29 581.6199 7/5
30 601.6757
31 621.7315 10/7
32 641.7874 13/9
33 661.8433 16/11, 22/15
34 681.8891
35 701.955 3/2
36 722.0109
37 742.0667 20/13
38 762.1226 14/9
39 782.1784 11/7
40 802.2343
41 822.2901 8/5
42 842.346 13/8
43 862.4019 18/11
44 882.4577 5/3
45 902.5136
46 922.5694
47 942.6253 12/7
48 962.6811 26/15 7/4
49 982.737
50 1002.7929 16/9
51 1022.8487 9/5
52 1042.9046 11/6, 20/11
53 1062.9604
54 1083.0163 15/8
55 1103.0721
56 1123.128
57 1143.1839
58 1163.2397
59 1183.2956
60 1203.3514
61 1223.4073 81/40
62 1243.4631
63 1263.519 56/27, 27/13
64 1283.5749 21/10
65 1303.6307
66 1323.6866 32/15
67 1343.7424
68 1363.7983 24/11, 11/5
69 1383.85415 20/9
70 1403.91 9/4