# 35edf

 ← 34edf 35edf 36edf →
Prime factorization 5 × 7
Step size 20.0559¢
Octave 60\35edf (1203.35¢) (→12\7edf)
Twelfth 95\35edf (1905.31¢) (→19\7edf)
Consistency limit 7
Distinct consistency limit 7

Division of the just perfect fifth into 35 equal parts (35EDF) is related to 60 edo, but with the 3/2 rather than the 2/1 being just. The octave is about 3.3514 cents stretched and the step size is about 20.0559 cents (corresponding to 59.8329 edo, practically identical to every sixth step of 359edo). The patent val has a generally sharp tendency for harmonics up to 18, with the exception for 13. Unlike 60edo, it is only consistent up to the 7-integer-limit, with discrepancy for the 8th harmonic (three octaves).

Lookalikes: 60edo, 95edt

## Intervals

 degrees of 60edo cents value approximate ratios in the 2.3.5.13 subgroup additional ratios of 7 and 11 (assuming flat values for primes) 0 1 20.0559 81/80 2 40.1117 3 60.1676 28/27, 27/26 4 80.2234 21/20 5 100.2793 6 120.3351 16/15 7 140.391 8 160.4469 12/11, 11/10 9 180.5027 10/9 10 200.5586 9/8 11 220.6144 12 240.6703 15/13 8/7 13 260.7621 7/6 14 280.782 15 300.8379 16 320.8937 6/5 17 340.9496 11/9 18 361.0054 16/13 19 381.0613 5/4 20 401.1171 21 421.173 14/11 22 441.2289 9/7 23 461.2847 13/10 24 481.3406 25 501.3964 4/3 26 521.4523 27 541.5081 11/8, 15/11 28 561.564 18/13 29 581.6199 7/5 30 601.6757 31 621.7315 10/7 32 641.7874 13/9 33 661.8433 16/11, 22/15 34 681.8891 35 701.955 3/2 36 722.0109 37 742.0667 20/13 38 762.1226 14/9 39 782.1784 11/7 40 802.2343 41 822.2901 8/5 42 842.346 13/8 43 862.4019 18/11 44 882.4577 5/3 45 902.5136 46 922.5694 47 942.6253 12/7 48 962.6811 26/15 7/4 49 982.737 50 1002.7929 16/9 51 1022.8487 9/5 52 1042.9046 11/6, 20/11 53 1062.9604 54 1083.0163 15/8 55 1103.0721 56 1123.128 57 1143.1839 58 1163.2397 59 1183.2956 60 1203.3514 61 1223.4073 81/40 62 1243.4631 63 1263.519 56/27, 27/13 64 1283.5749 21/10 65 1303.6307 66 1323.6866 32/15 67 1343.7424 68 1363.7983 24/11, 11/5 69 1383.85415 20/9 70 1403.91 9/4