155ed6
Jump to navigation
Jump to search
Prime factorization
5 × 31
Step size
20.0126¢
Octave
60\155ed6 (1200.76¢) (→12\31ed6)
Twelfth
95\155ed6 (1901.2¢) (→19\31ed6)
Consistency limit
10
Distinct consistency limit
10
← 154ed6 | 155ed6 | 156ed6 → |
155 equal divisions of the 6th harmonic (abbreviated 155ed6) is a nonoctave tuning system that divides the interval of 6/1 into 155 equal parts of about 20 ¢ each. Each step represents a frequency ratio of 61/155, or the 155th root of 6.
155ed6 is related to 60edo (tenth-tone tuning), but with the 6/1 rather than the 2/1 being just. This stretches the octave by about 0.8 ¢.
Lookalikes: 60edo, 139ed5, 95edt, 35edf
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 20 | |
2 | 40 | 43/42, 44/43, 45/44 |
3 | 60 | 29/28, 30/29 |
4 | 80.1 | 22/21, 45/43 |
5 | 100.1 | 18/17 |
6 | 120.1 | 15/14 |
7 | 140.1 | 51/47 |
8 | 160.1 | 34/31, 45/41, 57/52 |
9 | 180.1 | 51/46 |
10 | 200.1 | 46/41, 55/49 |
11 | 220.1 | 25/22, 42/37 |
12 | 240.2 | 31/27, 54/47 |
13 | 260.2 | 36/31, 43/37, 50/43 |
14 | 280.2 | 20/17, 47/40 |
15 | 300.2 | 44/37 |
16 | 320.2 | |
17 | 340.2 | 28/23, 45/37 |
18 | 360.2 | 16/13 |
19 | 380.2 | |
20 | 400.3 | 29/23, 34/27 |
21 | 420.3 | 51/40 |
22 | 440.3 | 40/31, 58/45 |
23 | 460.3 | 30/23, 47/36 |
24 | 480.3 | 33/25 |
25 | 500.3 | |
26 | 520.3 | 27/20, 50/37 |
27 | 540.3 | 41/30, 56/41 |
28 | 560.4 | 47/34 |
29 | 580.4 | |
30 | 600.4 | 41/29, 58/41 |
31 | 620.4 | |
32 | 640.4 | 42/29 |
33 | 660.4 | 41/28 |
34 | 680.4 | 40/27 |
35 | 700.4 | |
36 | 720.5 | 44/29, 47/31, 50/33 |
37 | 740.5 | 23/15 |
38 | 760.5 | 45/29 |
39 | 780.5 | |
40 | 800.5 | 27/17 |
41 | 820.5 | 45/28 |
42 | 840.5 | 13/8 |
43 | 860.5 | 23/14, 51/31 |
44 | 880.6 | |
45 | 900.6 | 37/22 |
46 | 920.6 | |
47 | 940.6 | 31/18 |
48 | 960.6 | 47/27, 54/31 |
49 | 980.6 | 37/21 |
50 | 1000.6 | 41/23, 57/32 |
51 | 1020.6 | |
52 | 1040.7 | 31/17 |
53 | 1060.7 | 24/13 |
54 | 1080.7 | 28/15 |
55 | 1100.7 | 17/9 |
56 | 1120.7 | 21/11 |
57 | 1140.7 | 29/15, 56/29 |
58 | 1160.7 | 43/22, 45/23 |
59 | 1180.7 | |
60 | 1200.8 | 2/1 |
61 | 1220.8 | |
62 | 1240.8 | 43/21 |
63 | 1260.8 | 29/14 |
64 | 1280.8 | 44/21 |
65 | 1300.8 | |
66 | 1320.8 | 15/7 |
67 | 1340.8 | |
68 | 1360.9 | |
69 | 1380.9 | |
70 | 1400.9 | |
71 | 1420.9 | 25/11 |
72 | 1440.9 | 23/10 |
73 | 1460.9 | |
74 | 1480.9 | 40/17 |
75 | 1500.9 | 50/21 |
76 | 1521 | |
77 | 1541 | 56/23 |
78 | 1561 | |
79 | 1581 | |
80 | 1601 | 58/23 |
81 | 1621 | 51/20 |
82 | 1641 | |
83 | 1661 | 47/18 |
84 | 1681.1 | 37/14 |
85 | 1701.1 | |
86 | 1721.1 | |
87 | 1741.1 | 41/15 |
88 | 1761.1 | 47/17 |
89 | 1781.1 | 14/5 |
90 | 1801.1 | |
91 | 1821.1 | |
92 | 1841.2 | |
93 | 1861.2 | 41/14 |
94 | 1881.2 | |
95 | 1901.2 | 3/1 |
96 | 1921.2 | |
97 | 1941.2 | 43/14, 46/15 |
98 | 1961.2 | |
99 | 1981.2 | 22/7 |
100 | 2001.3 | 54/17 |
101 | 2021.3 | 45/14 |
102 | 2041.3 | 13/4 |
103 | 2061.3 | |
104 | 2081.3 | |
105 | 2101.3 | 37/11 |
106 | 2121.3 | |
107 | 2141.3 | 31/9 |
108 | 2161.4 | |
109 | 2181.4 | |
110 | 2201.4 | |
111 | 2221.4 | |
112 | 2241.4 | |
113 | 2261.4 | 48/13 |
114 | 2281.4 | 56/15 |
115 | 2301.5 | 34/9 |
116 | 2321.5 | |
117 | 2341.5 | 58/15 |
118 | 2361.5 | 43/11 |
119 | 2381.5 | |
120 | 2401.5 | |
121 | 2421.5 | |
122 | 2441.5 | 41/10 |
123 | 2461.6 | 29/7 |
124 | 2481.6 | |
125 | 2501.6 | |
126 | 2521.6 | |
127 | 2541.6 | |
128 | 2561.6 | |
129 | 2581.6 | 40/9 |
130 | 2601.6 | |
131 | 2621.7 | 50/11 |
132 | 2641.7 | 23/5 |
133 | 2661.7 | |
134 | 2681.7 | |
135 | 2701.7 | |
136 | 2721.7 | |
137 | 2741.7 | 39/8 |
138 | 2761.7 | |
139 | 2781.8 | |
140 | 2801.8 | |
141 | 2821.8 | 51/10 |
142 | 2841.8 | 31/6 |
143 | 2861.8 | 47/9 |
144 | 2881.8 | 37/7 |
145 | 2901.8 | |
146 | 2921.8 | |
147 | 2941.9 | |
148 | 2961.9 | |
149 | 2981.9 | 28/5 |
150 | 3001.9 | 17/3 |
151 | 3021.9 | |
152 | 3041.9 | 29/5 |
153 | 3061.9 | |
154 | 3081.9 | |
155 | 3102 | 6/1 |
Harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.76 | -0.76 | -4.56 | -6.71 | -8.71 | +2.27 | -1.87 | +5.70 | -4.86 | -5.91 | -1.29 |
Relative (%) | +3.8 | -3.8 | -22.8 | -33.5 | -43.5 | +11.4 | -9.3 | +28.5 | -24.3 | -29.5 | -6.4 | |
Steps (reduced) |
60 (60) |
95 (95) |
139 (139) |
168 (13) |
207 (52) |
222 (67) |
245 (90) |
255 (100) |
271 (116) |
291 (136) |
297 (142) |
Harmonic | 37 | 41 | 43 | 47 | 53 | 59 | 61 | 67 | 71 | 73 | 79 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -7.41 | -5.01 | -7.42 | -1.31 | -9.18 | +5.28 | +7.61 | +5.28 | +4.96 | -3.11 | +0.23 |
Relative (%) | -37.0 | -25.1 | -37.1 | -6.5 | -45.9 | +26.4 | +38.0 | +26.4 | +24.8 | -15.5 | +1.2 | |
Steps (reduced) |
312 (2) |
321 (11) |
325 (15) |
333 (23) |
343 (33) |
353 (43) |
356 (46) |
364 (54) |
369 (59) |
371 (61) |
378 (68) |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |