155ed6

From Xenharmonic Wiki
Jump to navigation Jump to search
← 154ed6 155ed6 156ed6 →
Prime factorization 5 × 31
Step size 20.0126¢ 
Octave 60\155ed6 (1200.76¢) (→12\31ed6)
Twelfth 95\155ed6 (1901.2¢) (→19\31ed6)
Consistency limit 10
Distinct consistency limit 10

155 equal divisions of the 6th harmonic (abbreviated 155ed6) is a nonoctave tuning system that divides the interval of 6/1 into 155 equal parts of about 20⁠ ⁠¢ each. Each step represents a frequency ratio of 61/155, or the 155th root of 6.

155ed6 is related to 60edo (tenth-tone tuning), but with the 6/1 rather than the 2/1 being just. This stretches the octave by about 0.8 ¢.

Lookalikes: 60edo, 139ed5, 95edt, 35edf

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 20
2 40 43/42, 44/43, 45/44
3 60 29/28, 30/29
4 80.1 22/21, 45/43
5 100.1 18/17
6 120.1 15/14
7 140.1 51/47
8 160.1 34/31, 45/41, 57/52
9 180.1 51/46
10 200.1 46/41, 55/49
11 220.1 25/22, 42/37
12 240.2 31/27, 54/47
13 260.2 36/31, 43/37, 50/43
14 280.2 20/17, 47/40
15 300.2 44/37
16 320.2
17 340.2 28/23, 45/37
18 360.2 16/13
19 380.2
20 400.3 29/23, 34/27
21 420.3 51/40
22 440.3 40/31, 58/45
23 460.3 30/23, 47/36
24 480.3 33/25
25 500.3
26 520.3 27/20, 50/37
27 540.3 41/30, 56/41
28 560.4 47/34
29 580.4
30 600.4 41/29, 58/41
31 620.4
32 640.4 42/29
33 660.4 41/28
34 680.4 40/27
35 700.4
36 720.5 44/29, 47/31, 50/33
37 740.5 23/15
38 760.5 45/29
39 780.5
40 800.5 27/17
41 820.5 45/28
42 840.5 13/8
43 860.5 23/14, 51/31
44 880.6
45 900.6 37/22
46 920.6
47 940.6 31/18
48 960.6 47/27, 54/31
49 980.6 37/21
50 1000.6 41/23, 57/32
51 1020.6
52 1040.7 31/17
53 1060.7 24/13
54 1080.7 28/15
55 1100.7 17/9
56 1120.7 21/11
57 1140.7 29/15, 56/29
58 1160.7 43/22, 45/23
59 1180.7
60 1200.8 2/1
61 1220.8
62 1240.8 43/21
63 1260.8 29/14
64 1280.8 44/21
65 1300.8
66 1320.8 15/7
67 1340.8
68 1360.9
69 1380.9
70 1400.9
71 1420.9 25/11
72 1440.9 23/10
73 1460.9
74 1480.9 40/17
75 1500.9 50/21
76 1521
77 1541 56/23
78 1561
79 1581
80 1601 58/23
81 1621 51/20
82 1641
83 1661 47/18
84 1681.1 37/14
85 1701.1
86 1721.1
87 1741.1 41/15
88 1761.1 47/17
89 1781.1 14/5
90 1801.1
91 1821.1
92 1841.2
93 1861.2 41/14
94 1881.2
95 1901.2 3/1
96 1921.2
97 1941.2 43/14, 46/15
98 1961.2
99 1981.2 22/7
100 2001.3 54/17
101 2021.3 45/14
102 2041.3 13/4
103 2061.3
104 2081.3
105 2101.3 37/11
106 2121.3
107 2141.3 31/9
108 2161.4
109 2181.4
110 2201.4
111 2221.4
112 2241.4
113 2261.4 48/13
114 2281.4 56/15
115 2301.5 34/9
116 2321.5
117 2341.5 58/15
118 2361.5 43/11
119 2381.5
120 2401.5
121 2421.5
122 2441.5 41/10
123 2461.6 29/7
124 2481.6
125 2501.6
126 2521.6
127 2541.6
128 2561.6
129 2581.6 40/9
130 2601.6
131 2621.7 50/11
132 2641.7 23/5
133 2661.7
134 2681.7
135 2701.7
136 2721.7
137 2741.7 39/8
138 2761.7
139 2781.8
140 2801.8
141 2821.8 51/10
142 2841.8 31/6
143 2861.8 47/9
144 2881.8 37/7
145 2901.8
146 2921.8
147 2941.9
148 2961.9
149 2981.9 28/5
150 3001.9 17/3
151 3021.9
152 3041.9 29/5
153 3061.9
154 3081.9
155 3102 6/1

Harmonics

Approximation of prime harmonics in 155ed6
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.76 -0.76 -4.56 -6.71 -8.71 +2.27 -1.87 +5.70 -4.86 -5.91 -1.29
Relative (%) +3.8 -3.8 -22.8 -33.5 -43.5 +11.4 -9.3 +28.5 -24.3 -29.5 -6.4
Steps
(reduced)
60
(60)
95
(95)
139
(139)
168
(13)
207
(52)
222
(67)
245
(90)
255
(100)
271
(116)
291
(136)
297
(142)
Approximation of prime harmonics in 155ed6
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) -7.41 -5.01 -7.42 -1.31 -9.18 +5.28 +7.61 +5.28 +4.96 -3.11 +0.23
Relative (%) -37.0 -25.1 -37.1 -6.5 -45.9 +26.4 +38.0 +26.4 +24.8 -15.5 +1.2
Steps
(reduced)
312
(2)
321
(11)
325
(15)
333
(23)
343
(33)
353
(43)
356
(46)
364
(54)
369
(59)
371
(61)
378
(68)


Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.