34edf

From Xenharmonic Wiki
Jump to navigation Jump to search
← 33edf 34edf 35edf →
Prime factorization 2 × 17
Step size 20.6457¢ 
Octave 58\34edf (1197.45¢) (→29\17edf)
Twelfth 92\34edf (1899.41¢) (→46\17edf)
Consistency limit 15
Distinct consistency limit 9

Division of the just perfect fifth into 34 equal parts (34EDF) is related to 58edo, but with the 3/2 rather than the 2/1 being just. The octave is compressed by about 2.5474 cents and the step size is about 20.6457 cents (corresponding to 58.1234 edo).

The patent val has a generally flat tendency for harmonics up to 16, with the exception for 5. Unlike 58edo, it is only consistent up to the 15-integer-limit, with discrepancy for the 16th harmonic (four octaves).

Lookalikes: 58edo, 92edt

Harmonics

Approximation of prime harmonics in 34edf
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -2.55 -2.55 +0.86 -3.57 -1.53 -1.69 +8.73 +1.98 +1.55 -7.48 +0.94
Relative (%) -12.3 -12.3 +4.2 -17.3 -7.4 -8.2 +42.3 +9.6 +7.5 -36.2 +4.5
Steps
(reduced)
58
(24)
92
(24)
135
(33)
163
(27)
201
(31)
215
(11)
238
(0)
247
(9)
263
(25)
282
(10)
288
(16)
Approximation of prime harmonics in 34edf
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) +4.31 -8.24 -8.11 +3.07 +1.53 +1.67 +5.89 +8.64 -9.17 +4.68 -8.20
Relative (%) +20.9 -39.9 -39.3 +14.8 +7.4 +8.1 +28.5 +41.8 -44.4 +22.6 -39.7
Steps
(reduced)
303
(31)
311
(5)
315
(9)
323
(17)
333
(27)
342
(2)
345
(5)
353
(13)
357
(17)
360
(20)
366
(26)

Intervals

Intervals of 34edf
Degree Cents Approx. ratios
0 1/1
1 20.6457 56/55, 64/63, 81/80, 128/125
2 41.2915 6/35, 49/48, 50/49, 55/54
3 61.9372 25/24, 26/25, 27/26, 28/27, 33/32
4 82.5829 21/20, 22/21
5 103.2287 16/15, 17/16, 18/17
6 123.8744 15/14, 14/13
144.52015 12/11, 13/12
8 165.1659 11/10
9 185.8116 10/9
10 206.45735 9/8
11 227.1031 8/7
12· 248.7488 15/13
13 268.3946 7/6
14 289.0403 13/11, 20/17
15 309.686 6/5
16 330.3318 17/14
17· 350.9775 11/9, 16/13
18 371.6232 21/17
19 392.269 5/4
20 412.9147 14/11
21 433.5604 9/7
22· 455.2062 13/10, 17/13, 22/17
23 474.8519 21/16
24 495.49765 4/3
25 516.1434 27/20
26 536.7891 15/11
27 557.43485 11/8, 18/13
28 578.0806 7/5
29 598.7263 17/12, 24/17
30 619.3721 10/7
31 640.0178 13/9, 16/11
32 660.6635 22/15
33 681.3093 40/27
34 701.955 3/2
35 722.6007 32/21
36 743.2465 20/13, 26/17, 17/11
37 763.8922 14/9
38 784.5379 11/7
39 805.1837 8/5
40 825.8294 34/21
41 846.47515 13/8, 18/11
42 867.1209 28/17
43 887.7666 5/3,
44 908.41235 22/13, 17/10
45 929.0581 12/7
46 949.7038 26/15
47 970.35 7/4
48 990.9952 16/9
49 1011.641 9/5
50 1032.32868 20/11
51 1052.9235 11/6, 24/13
52 1073.5782 28/15, 13/7
53 1094.224 15/8, 32/17, 17/9
54 1114.8697 40/21, 21/11
55 1135.5154 48/25, 25/13, 52/27, 27/14, 64/33
56 1156.1612 35/18, 96/49, 49/25, 108/55
57 1176.8069 55/28, 63/32, 160/81, 125/64
58 1197.45265 2/1
59 1218.0984 112/55, 128/63, 81/40, 256/125
60 1238.7441 72/35, 49/24, 100/49, 55/27
61 1259.38985 25/12, 52/25, 27/13, 56/27, 33/16
62 1280.0356 21/10, 44/21
63 1300.6813 32/15, 17/8, 36/17
64 1321.3271 15/7, 28/13
65 1341.9728 24/11, 13/5
66 1362.6185 11/10
67 1383.3643 20/9
68 1403.91 9/4