92edt

From Xenharmonic Wiki
Jump to navigation Jump to search
← 91edt 92edt 93edt →
Prime factorization 22 × 23
Step size 20.6734 ¢ 
Octave 58\92edt (1199.06 ¢) (→ 29\46edt)
Consistency limit 18
Distinct consistency limit 12

92 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 92edt or 92ed3), is a nonoctave tuning system that divides the interval of 3/1 into 92 equal parts of about 20.7 ¢ each. Each step represents a frequency ratio of 31/92, or the 92nd root of 3.

Theory

92edt is related to 58edo, but with the 3/1 rather than the 2/1 being just. The octave is about 0.941 cents compressed. Like 58edo, 92edt is consistent to the 18-integer-limit. The prime harmonics 5, 7, 11, and 13, which are tuned sharp in 58edo, remain sharp here, but significantly less so. The 17, which is flat to begin with, becomes worse.

Harmonics

Approximation of harmonics in 92edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -0.94 +0.00 -1.88 +4.60 -0.94 +0.94 -2.82 +0.00 +3.66 +4.04 -1.88
Relative (%) -4.6 +0.0 -9.1 +22.2 -4.6 +4.6 -13.7 +0.0 +17.7 +19.5 -9.1
Steps
(reduced)
58
(58)
92
(0)
116
(24)
135
(43)
150
(58)
163
(71)
174
(82)
184
(0)
193
(9)
201
(17)
208
(24)
Approximation of harmonics in 92edt (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) +4.26 +0.00 +4.60 -3.77 -5.35 -0.94 +8.82 +2.72 +0.94 +3.10 +8.84 -2.82
Relative (%) +20.6 +0.0 +22.2 -18.2 -25.9 -4.6 +42.7 +13.1 +4.6 +15.0 +42.7 -13.7
Steps
(reduced)
215
(31)
221
(37)
227
(43)
232
(48)
237
(53)
242
(58)
247
(63)
251
(67)
255
(71)
259
(75)
263
(79)
266
(82)

Subsets and supersets

Since 92 factors into primes as 22 × 23, 92edt contains subset edts 2, 4, 23, and 46.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 20.7 14.1
2 41.3 28.3 40/39, 41/40, 42/41, 43/42
3 62 42.4 28/27, 29/28
4 82.7 56.5 21/20, 22/21, 43/41
5 103.4 70.7 17/16, 35/33
6 124 84.8 29/27, 43/40
7 144.7 98.9 25/23, 37/34, 38/35
8 165.4 113 11/10
9 186.1 127.2 39/35
10 206.7 141.3
11 227.4 155.4 41/36
12 248.1 169.6 15/13
13 268.8 183.7 7/6
14 289.4 197.8 13/11
15 310.1 212 43/36
16 330.8 226.1 23/19, 40/33
17 351.4 240.2 38/31
18 372.1 254.3 26/21, 31/25, 36/29
19 392.8 268.5
20 413.5 282.6 33/26
21 434.1 296.7 9/7
22 454.8 310.9 13/10
23 475.5 325 25/19
24 496.2 339.1 4/3
25 516.8 353.3 27/20, 31/23, 35/26
26 537.5 367.4 15/11
27 558.2 381.5 29/21, 40/29
28 578.9 395.7
29 599.5 409.8 24/17, 41/29
30 620.2 423.9 10/7
31 640.9 438 29/20, 42/29
32 661.5 452.2 22/15, 41/28
33 682.2 466.3 40/27, 43/29
34 702.9 480.4 3/2
35 723.6 494.6 38/25, 41/27
36 744.2 508.7 20/13, 43/28
37 764.9 522.8 14/9
38 785.6 537
39 806.3 551.1 35/22, 43/27
40 826.9 565.2 29/18
41 847.6 579.3 31/19
42 868.3 593.5 33/20, 38/23, 43/26
43 889 607.6
44 909.6 621.7 22/13
45 930.3 635.9
46 951 650 26/15
47 971.7 664.1
48 992.3 678.3 39/22
49 1013 692.4
50 1033.7 706.5 20/11
51 1054.3 720.7
52 1075 734.8 41/22
53 1095.7 748.9 32/17
54 1116.4 763 40/21
55 1137 777.2 27/14
56 1157.7 791.3 39/20, 41/21, 43/22
57 1178.4 805.4
58 1199.1 819.6 2/1
59 1219.7 833.7
60 1240.4 847.8 41/20, 43/21
61 1261.1 862 29/14
62 1281.8 876.1 21/10
63 1302.4 890.2 17/8
64 1323.1 904.3 43/20
65 1343.8 918.5 37/17
66 1364.4 932.6 11/5
67 1385.1 946.7 20/9
68 1405.8 960.9 9/4
69 1426.5 975 41/18
70 1447.1 989.1 30/13
71 1467.8 1003.3 7/3
72 1488.5 1017.4 26/11
73 1509.2 1031.5 43/18
74 1529.8 1045.7 29/12
75 1550.5 1059.8
76 1571.2 1073.9
77 1591.9 1088
78 1612.5 1102.2 33/13
79 1633.2 1116.3 18/7
80 1653.9 1130.4 13/5
81 1674.5 1144.6
82 1695.2 1158.7
83 1715.9 1172.8 35/13
84 1736.6 1187 30/11
85 1757.2 1201.1
86 1777.9 1215.2
87 1798.6 1229.3
88 1819.3 1243.5 20/7
89 1839.9 1257.6
90 1860.6 1271.7 41/14
91 1881.3 1285.9
92 1902 1300 3/1

See also