92edt
Jump to navigation
Jump to search
Prime factorization
22 × 23
Step size
20.6734¢
Octave
58\92edt (1199.06¢) (→29\46edt)
Consistency limit
17
Distinct consistency limit
11
← 91edt | 92edt | 93edt → |
Division of the third harmonic into 92 equal parts (92EDT) is related to 58 edo, but with the 3/1 rather than the 2/1 being just. The octave is about 0.9414 cents compressed and the step size is about 20.6734 cents. It is consistent to the 18-integer-limit.
Lookalikes: 58edo, 150ed6, 163ed7, 34edf
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 20.673 | |
2 | 41.347 | 40/39, 41/40, 42/41, 43/42 |
3 | 62.02 | 28/27, 29/28 |
4 | 82.694 | 21/20, 22/21, 43/41 |
5 | 103.367 | 17/16, 35/33 |
6 | 124.041 | 29/27, 43/40 |
7 | 144.714 | 25/23, 37/34, 38/35 |
8 | 165.387 | 11/10 |
9 | 186.061 | 39/35 |
10 | 206.734 | |
11 | 227.408 | 41/36 |
12 | 248.081 | 15/13 |
13 | 268.755 | 7/6 |
14 | 289.428 | 13/11 |
15 | 310.101 | 43/36 |
16 | 330.775 | 23/19, 40/33 |
17 | 351.448 | 38/31 |
18 | 372.122 | 26/21, 31/25, 36/29 |
19 | 392.795 | |
20 | 413.468 | 33/26 |
21 | 434.142 | 9/7 |
22 | 454.815 | 13/10 |
23 | 475.489 | 25/19 |
24 | 496.162 | 4/3 |
25 | 516.836 | 27/20, 31/23, 35/26 |
26 | 537.509 | 15/11 |
27 | 558.182 | 29/21, 40/29 |
28 | 578.856 | |
29 | 599.529 | 24/17, 41/29 |
30 | 620.203 | 10/7 |
31 | 640.876 | 29/20, 42/29 |
32 | 661.55 | 22/15, 41/28 |
33 | 682.223 | 40/27, 43/29 |
34 | 702.896 | 3/2 |
35 | 723.57 | 38/25, 41/27 |
36 | 744.243 | 20/13, 43/28 |
37 | 764.917 | 14/9 |
38 | 785.59 | |
39 | 806.264 | 35/22, 43/27 |
40 | 826.937 | 29/18 |
41 | 847.61 | 31/19 |
42 | 868.284 | 33/20, 38/23, 43/26 |
43 | 888.957 | |
44 | 909.631 | 22/13 |
45 | 930.304 | |
46 | 950.978 | 26/15 |
47 | 971.651 | |
48 | 992.324 | 39/22 |
49 | 1012.998 | |
50 | 1033.671 | 20/11 |
51 | 1054.345 | |
52 | 1075.018 | 41/22 |
53 | 1095.691 | 32/17 |
54 | 1116.365 | 40/21 |
55 | 1137.038 | 27/14 |
56 | 1157.712 | 39/20, 41/21, 43/22 |
57 | 1178.385 | |
58 | 1199.059 | 2/1 |
59 | 1219.732 | |
60 | 1240.405 | 41/20, 43/21 |
61 | 1261.079 | 29/14 |
62 | 1281.752 | 21/10 |
63 | 1302.426 | 17/8 |
64 | 1323.099 | 43/20 |
65 | 1343.773 | 37/17 |
66 | 1364.446 | 11/5 |
67 | 1385.119 | 20/9 |
68 | 1405.793 | 9/4 |
69 | 1426.466 | 41/18 |
70 | 1447.14 | 30/13 |
71 | 1467.813 | 7/3 |
72 | 1488.487 | 26/11 |
73 | 1509.16 | 43/18 |
74 | 1529.833 | 29/12 |
75 | 1550.507 | |
76 | 1571.18 | |
77 | 1591.854 | |
78 | 1612.527 | 33/13 |
79 | 1633.2 | 18/7 |
80 | 1653.874 | 13/5 |
81 | 1674.547 | |
82 | 1695.221 | |
83 | 1715.894 | 35/13 |
84 | 1736.568 | 30/11 |
85 | 1757.241 | |
86 | 1777.914 | |
87 | 1798.588 | |
88 | 1819.261 | 20/7 |
89 | 1839.935 | |
90 | 1860.608 | 41/14 |
91 | 1881.282 | |
92 | 1901.955 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.94 | +0.00 | -1.88 | +4.60 | -0.94 | +0.94 | -2.82 | +0.00 | +3.66 | +4.04 | -1.88 |
Relative (%) | -4.6 | +0.0 | -9.1 | +22.2 | -4.6 | +4.6 | -13.7 | +0.0 | +17.7 | +19.5 | -9.1 | |
Steps (reduced) |
58 (58) |
92 (0) |
116 (24) |
135 (43) |
150 (58) |
163 (71) |
174 (82) |
184 (0) |
193 (9) |
201 (17) |
208 (24) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +4.26 | +0.00 | +4.60 | -3.77 | -5.35 | -0.94 | +8.82 | +2.72 | +0.94 | +3.10 | +8.84 |
Relative (%) | +20.6 | +0.0 | +22.2 | -18.2 | -25.9 | -4.6 | +42.7 | +13.1 | +4.6 | +15.0 | +42.7 | |
Steps (reduced) |
215 (31) |
221 (37) |
227 (43) |
232 (48) |
237 (53) |
242 (58) |
247 (63) |
251 (67) |
255 (71) |
259 (75) |
263 (79) |