92edt

From Xenharmonic Wiki
Jump to navigation Jump to search
← 91edt 92edt 93edt →
Prime factorization 22 × 23
Step size 20.6734¢ 
Octave 58\92edt (1199.06¢) (→29\46edt)
Consistency limit 17
Distinct consistency limit 11

Division of the third harmonic into 92 equal parts (92EDT) is related to 58 edo, but with the 3/1 rather than the 2/1 being just. The octave is about 0.9414 cents compressed and the step size is about 20.6734 cents. It is consistent to the 18-integer-limit.

Lookalikes: 58edo, 150ed6, 163ed7, 34edf

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 20.7 14.1
2 41.3 28.3 40/39, 41/40, 42/41, 43/42
3 62 42.4 28/27, 29/28
4 82.7 56.5 21/20, 22/21, 43/41
5 103.4 70.7 17/16, 35/33
6 124 84.8 29/27, 43/40
7 144.7 98.9 25/23, 37/34, 38/35
8 165.4 113 11/10
9 186.1 127.2 39/35
10 206.7 141.3
11 227.4 155.4 41/36
12 248.1 169.6 15/13
13 268.8 183.7 7/6
14 289.4 197.8 13/11
15 310.1 212 43/36
16 330.8 226.1 23/19, 40/33
17 351.4 240.2 38/31
18 372.1 254.3 26/21, 31/25, 36/29
19 392.8 268.5
20 413.5 282.6 33/26
21 434.1 296.7 9/7
22 454.8 310.9 13/10
23 475.5 325 25/19
24 496.2 339.1 4/3
25 516.8 353.3 27/20, 31/23, 35/26
26 537.5 367.4 15/11
27 558.2 381.5 29/21, 40/29
28 578.9 395.7
29 599.5 409.8 24/17, 41/29
30 620.2 423.9 10/7
31 640.9 438 29/20, 42/29
32 661.5 452.2 22/15, 41/28
33 682.2 466.3 40/27, 43/29
34 702.9 480.4 3/2
35 723.6 494.6 38/25, 41/27
36 744.2 508.7 20/13, 43/28
37 764.9 522.8 14/9
38 785.6 537
39 806.3 551.1 35/22, 43/27
40 826.9 565.2 29/18
41 847.6 579.3 31/19
42 868.3 593.5 33/20, 38/23, 43/26
43 889 607.6
44 909.6 621.7 22/13
45 930.3 635.9
46 951 650 26/15
47 971.7 664.1
48 992.3 678.3 39/22
49 1013 692.4
50 1033.7 706.5 20/11
51 1054.3 720.7
52 1075 734.8 41/22
53 1095.7 748.9 32/17
54 1116.4 763 40/21
55 1137 777.2 27/14
56 1157.7 791.3 39/20, 41/21, 43/22
57 1178.4 805.4
58 1199.1 819.6 2/1
59 1219.7 833.7
60 1240.4 847.8 41/20, 43/21
61 1261.1 862 29/14
62 1281.8 876.1 21/10
63 1302.4 890.2 17/8
64 1323.1 904.3 43/20
65 1343.8 918.5 37/17
66 1364.4 932.6 11/5
67 1385.1 946.7 20/9
68 1405.8 960.9 9/4
69 1426.5 975 41/18
70 1447.1 989.1 30/13
71 1467.8 1003.3 7/3
72 1488.5 1017.4 26/11
73 1509.2 1031.5 43/18
74 1529.8 1045.7 29/12
75 1550.5 1059.8
76 1571.2 1073.9
77 1591.9 1088
78 1612.5 1102.2 33/13
79 1633.2 1116.3 18/7
80 1653.9 1130.4 13/5
81 1674.5 1144.6
82 1695.2 1158.7
83 1715.9 1172.8 35/13
84 1736.6 1187 30/11
85 1757.2 1201.1
86 1777.9 1215.2
87 1798.6 1229.3
88 1819.3 1243.5 20/7
89 1839.9 1257.6
90 1860.6 1271.7 41/14
91 1881.3 1285.9
92 1902 1300 3/1

Harmonics

Approximation of harmonics in 92edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -0.94 +0.00 -1.88 +4.60 -0.94 +0.94 -2.82 +0.00 +3.66 +4.04 -1.88
Relative (%) -4.6 +0.0 -9.1 +22.2 -4.6 +4.6 -13.7 +0.0 +17.7 +19.5 -9.1
Steps
(reduced)
58
(58)
92
(0)
116
(24)
135
(43)
150
(58)
163
(71)
174
(82)
184
(0)
193
(9)
201
(17)
208
(24)
Approximation of harmonics in 92edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +4.26 +0.00 +4.60 -3.77 -5.35 -0.94 +8.82 +2.72 +0.94 +3.10 +8.84
Relative (%) +20.6 +0.0 +22.2 -18.2 -25.9 -4.6 +42.7 +13.1 +4.6 +15.0 +42.7
Steps
(reduced)
215
(31)
221
(37)
227
(43)
232
(48)
237
(53)
242
(58)
247
(63)
251
(67)
255
(71)
259
(75)
263
(79)