23edt

From Xenharmonic Wiki
Jump to navigation Jump to search
← 22edt23edt24edt →
Prime factorization 23 (prime)
Step size 82.6937¢ 
Octave 15\23edt (1240.41¢)
Consistency limit 2
Distinct consistency limit 2

23EDT is the equal division of the third harmonic into 23 parts of 82.6937 cents each, corresponding to 14.5114 edo (similar to every second step of 29edo).

Intervals

degree cents value hekts corresponding JI intervals comments
0 exact 1/1
1 82.6937 56.522 150/143
2 165.3874 113.0435 11/10
3 248.0811 169.565 15/13
4 330.7748 226.087 23/19
5 413.4685 282.609 33/26, 80/63
6 496.1622 339.13 (4/3)
7 578.8559 395.652 88/63, 95/68 pseudo-7/5
8 661.5496 452.174 63/43
9 744.2433 508.696 135/88
10 826.937 565.217 50/31, 408/253, 129/80, 108/67
11 909.6307 621.739 (27/16) pseudo-5/3
12 992.3243 678.261 (16/9)
13 1075.018 734.783 93/50, 253/136, 80/43, 67/36
14 1157.7117 791.304 88/45
15 1240.4054 847.826 43/21
16 1323.0991 904.348 189/88, 204/95
17 1405.7928 960.87 (9/4)
18 1488.4865 1017.391 26/11, 189/80 pseudo-7/3
19 1571.1802 1073.913 57/23
20 1653.8739 1130.435. 13/5
21 1736.5676 1186.9565 30/11
22 1819.2613 1243.478 143/50
23 1901.9550 1300 exact 3/1 just perfect fifth plus an octave

Harmonics

Approximation of harmonics in 23edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +40.4 +0.0 -1.9 +25.3 +40.4 +21.6 +38.5 +0.0 -17.0 -16.6 -1.9
Relative (%) +48.9 +0.0 -2.3 +30.6 +48.9 +26.1 +46.6 +0.0 -20.6 -20.1 -2.3
Steps
(reduced)
15
(15)
23
(0)
29
(6)
34
(11)
38
(15)
41
(18)
44
(21)
46
(0)
48
(2)
50
(4)
52
(6)
Approximation of harmonics in 23edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +24.9 -20.7 +25.3 -3.8 -26.0 +40.4 +29.5 +23.4 +21.6 +23.8 +29.5
Relative (%) +30.1 -25.0 +30.6 -4.6 -31.5 +48.9 +35.7 +28.3 +26.1 +28.7 +35.7
Steps
(reduced)
54
(8)
55
(9)
57
(11)
58
(12)
59
(13)
61
(15)
62
(16)
63
(17)
64
(18)
65
(19)
66
(20)