91edt
Jump to navigation
Jump to search
Prime factorization
7 × 13
Step size
20.9006¢
Octave
57\91edt (1191.33¢)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 90edt | 91edt | 92edt → |
91 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 91edt or 91ed3), is a nonoctave tuning system that divides the interval of 3/1 into 91 equal parts of about 20.9 ¢ each. Each step represents a frequency ratio of 31/91, or the 91st root of 3.
Intervals
Steps | Cents | Hekts | Approximate ratios |
---|---|---|---|
0 | 0 | 0 | 1/1 |
1 | 20.9 | 14.3 | |
2 | 41.8 | 28.6 | |
3 | 62.7 | 42.9 | |
4 | 83.6 | 57.1 | |
5 | 104.5 | 71.4 | |
6 | 125.4 | 85.7 | 29/27 |
7 | 146.3 | 100 | 37/34 |
8 | 167.2 | 114.3 | |
9 | 188.1 | 128.6 | 39/35 |
10 | 209 | 142.9 | 35/31 |
11 | 229.9 | 157.1 | |
12 | 250.8 | 171.4 | |
13 | 271.7 | 185.7 | |
14 | 292.6 | 200 | |
15 | 313.5 | 214.3 | 6/5 |
16 | 334.4 | 228.6 | |
17 | 355.3 | 242.9 | 27/22 |
18 | 376.2 | 257.1 | 41/33 |
19 | 397.1 | 271.4 | 34/27, 39/31 |
20 | 418 | 285.7 | |
21 | 438.9 | 300 | |
22 | 459.8 | 314.3 | |
23 | 480.7 | 328.6 | 29/22 |
24 | 501.6 | 342.9 | |
25 | 522.5 | 357.1 | 23/17 |
26 | 543.4 | 371.4 | 37/27 |
27 | 564.3 | 385.7 | 18/13 |
28 | 585.2 | 400 | 7/5 |
29 | 606.1 | 414.3 | 27/19 |
30 | 627 | 428.6 | 33/23 |
31 | 647.9 | 442.9 | |
32 | 668.8 | 457.1 | |
33 | 689.7 | 471.4 | |
34 | 710.6 | 485.7 | |
35 | 731.5 | 500 | 29/19 |
36 | 752.4 | 514.3 | 17/11 |
37 | 773.3 | 528.6 | |
38 | 794.2 | 542.9 | |
39 | 815.1 | 557.1 | |
40 | 836 | 571.4 | 34/21 |
41 | 856.9 | 585.7 | |
42 | 877.8 | 600 | |
43 | 898.7 | 614.3 | 37/22, 42/25 |
44 | 919.6 | 628.6 | |
45 | 940.5 | 642.9 | 31/18 |
46 | 961.4 | 657.1 | |
47 | 982.3 | 671.4 | 37/21 |
48 | 1003.2 | 685.7 | 25/14, 41/23 |
49 | 1024.1 | 700 | 38/21 |
50 | 1045 | 714.3 | |
51 | 1065.9 | 728.6 | |
52 | 1086.8 | 742.9 | |
53 | 1107.7 | 757.1 | |
54 | 1128.6 | 771.4 | |
55 | 1149.5 | 785.7 | 33/17, 35/18 |
56 | 1170.4 | 800 | |
57 | 1191.3 | 814.3 | |
58 | 1212.2 | 828.6 | |
59 | 1233.1 | 842.9 | |
60 | 1254 | 857.1 | 31/15 |
61 | 1274.9 | 871.4 | 23/11 |
62 | 1295.8 | 885.7 | 19/9 |
63 | 1316.7 | 900 | 15/7 |
64 | 1337.6 | 914.3 | 13/6 |
65 | 1358.5 | 928.6 | |
66 | 1379.4 | 942.9 | |
67 | 1400.3 | 957.1 | |
68 | 1421.2 | 971.4 | |
69 | 1442.1 | 985.7 | |
70 | 1463 | 1000 | |
71 | 1483.9 | 1014.3 | |
72 | 1504.8 | 1028.6 | 31/13 |
73 | 1525.7 | 1042.9 | 41/17 |
74 | 1546.6 | 1057.1 | 22/9 |
75 | 1567.5 | 1071.4 | |
76 | 1588.4 | 1085.7 | 5/2 |
77 | 1609.3 | 1100 | 38/15 |
78 | 1630.2 | 1114.3 | |
79 | 1651.1 | 1128.6 | |
80 | 1672 | 1142.9 | |
81 | 1692.9 | 1157.1 | |
82 | 1713.8 | 1171.4 | 35/13 |
83 | 1734.8 | 1185.7 | |
84 | 1755.7 | 1200 | |
85 | 1776.6 | 1214.3 | |
86 | 1797.5 | 1228.6 | |
87 | 1818.4 | 1242.9 | |
88 | 1839.3 | 1257.1 | |
89 | 1860.2 | 1271.4 | |
90 | 1881.1 | 1285.7 | |
91 | 1902 | 1300 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -8.67 | +0.00 | +3.57 | -6.53 | -8.67 | -3.83 | -5.10 | +0.00 | +5.70 | +7.90 | +3.57 |
Relative (%) | -41.5 | +0.0 | +17.1 | -31.3 | -41.5 | -18.3 | -24.4 | +0.0 | +27.3 | +37.8 | +17.1 | |
Steps (reduced) |
57 (57) |
91 (0) |
115 (24) |
133 (42) |
148 (57) |
161 (70) |
172 (81) |
182 (0) |
191 (9) |
199 (17) |
206 (24) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -9.60 | +8.41 | -6.53 | +7.14 | +6.69 | -8.67 | +2.23 | -2.96 | -3.83 | -0.76 | +5.88 |
Relative (%) | -45.9 | +40.2 | -31.3 | +34.2 | +32.0 | -41.5 | +10.7 | -14.2 | -18.3 | -3.7 | +28.1 | |
Steps (reduced) |
212 (30) |
219 (37) |
224 (42) |
230 (48) |
235 (53) |
239 (57) |
244 (62) |
248 (66) |
252 (70) |
256 (74) |
260 (78) |