91edt
Jump to navigation
Jump to search
Prime factorization
7 × 13
Step size
20.9006¢
Octave
57\91edt (1191.33¢)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 90edt | 91edt | 92edt → |
91 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 91edt or 91ed3), is a nonoctave tuning system that divides the interval of 3/1 into 91 equal parts of about 20.9 ¢ each. Each step represents a frequency ratio of 31/91, or the 91st root of 3.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 20.901 | |
2 | 41.801 | |
3 | 62.702 | |
4 | 83.602 | |
5 | 104.503 | |
6 | 125.404 | 29/27 |
7 | 146.304 | 37/34 |
8 | 167.205 | |
9 | 188.105 | 39/35 |
10 | 209.006 | 35/31 |
11 | 229.907 | |
12 | 250.807 | |
13 | 271.708 | |
14 | 292.608 | |
15 | 313.509 | 6/5 |
16 | 334.41 | |
17 | 355.31 | 27/22 |
18 | 376.211 | 41/33 |
19 | 397.111 | 34/27, 39/31 |
20 | 418.012 | |
21 | 438.913 | |
22 | 459.813 | |
23 | 480.714 | 29/22 |
24 | 501.615 | |
25 | 522.515 | 23/17 |
26 | 543.416 | 37/27 |
27 | 564.316 | 18/13 |
28 | 585.217 | 7/5 |
29 | 606.118 | 27/19 |
30 | 627.018 | 33/23 |
31 | 647.919 | |
32 | 668.819 | |
33 | 689.72 | |
34 | 710.621 | |
35 | 731.521 | 29/19 |
36 | 752.422 | 17/11 |
37 | 773.322 | |
38 | 794.223 | |
39 | 815.124 | |
40 | 836.024 | 34/21 |
41 | 856.925 | |
42 | 877.825 | |
43 | 898.726 | 37/22, 42/25 |
44 | 919.627 | |
45 | 940.527 | 31/18 |
46 | 961.428 | |
47 | 982.328 | 37/21 |
48 | 1003.229 | 25/14, 41/23 |
49 | 1024.13 | 38/21 |
50 | 1045.03 | |
51 | 1065.931 | |
52 | 1086.831 | |
53 | 1107.732 | |
54 | 1128.633 | |
55 | 1149.533 | 33/17, 35/18 |
56 | 1170.434 | |
57 | 1191.334 | |
58 | 1212.235 | |
59 | 1233.136 | |
60 | 1254.036 | 31/15 |
61 | 1274.937 | 23/11 |
62 | 1295.837 | 19/9 |
63 | 1316.738 | 15/7 |
64 | 1337.639 | 13/6 |
65 | 1358.539 | |
66 | 1379.44 | |
67 | 1400.34 | |
68 | 1421.241 | |
69 | 1442.142 | |
70 | 1463.042 | |
71 | 1483.943 | |
72 | 1504.844 | 31/13 |
73 | 1525.744 | 41/17 |
74 | 1546.645 | 22/9 |
75 | 1567.545 | |
76 | 1588.446 | 5/2 |
77 | 1609.347 | 38/15 |
78 | 1630.247 | |
79 | 1651.148 | |
80 | 1672.048 | |
81 | 1692.949 | |
82 | 1713.85 | 35/13 |
83 | 1734.75 | |
84 | 1755.651 | |
85 | 1776.551 | |
86 | 1797.452 | |
87 | 1818.353 | |
88 | 1839.253 | |
89 | 1860.154 | |
90 | 1881.054 | |
91 | 1901.955 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -8.67 | +0.00 | +3.57 | -6.53 | -8.67 | -3.83 | -5.10 | +0.00 | +5.70 | +7.90 | +3.57 |
Relative (%) | -41.5 | +0.0 | +17.1 | -31.3 | -41.5 | -18.3 | -24.4 | +0.0 | +27.3 | +37.8 | +17.1 | |
Steps (reduced) |
57 (57) |
91 (0) |
115 (24) |
133 (42) |
148 (57) |
161 (70) |
172 (81) |
182 (0) |
191 (9) |
199 (17) |
206 (24) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -9.60 | +8.41 | -6.53 | +7.14 | +6.69 | -8.67 | +2.23 | -2.96 | -3.83 | -0.76 | +5.88 |
Relative (%) | -45.9 | +40.2 | -31.3 | +34.2 | +32.0 | -41.5 | +10.7 | -14.2 | -18.3 | -3.7 | +28.1 | |
Steps (reduced) |
212 (30) |
219 (37) |
224 (42) |
230 (48) |
235 (53) |
239 (57) |
244 (62) |
248 (66) |
252 (70) |
256 (74) |
260 (78) |