90edt
Jump to navigation
Jump to search
Prime factorization
2 × 32 × 5
Step size
21.1328¢
Octave
57\90edt (1204.57¢) (→19\30edt)
Consistency limit
5
Distinct consistency limit
5
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 89edt | 90edt | 91edt → |
90 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 90edt or 90ed3), is a nonoctave tuning system that divides the interval of 3/1 into 90 equal parts of about 21.1 ¢ each. Each step represents a frequency ratio of 31/90, or the 90th root of 3.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 21.1 | |
2 | 42.3 | 39/38, 42/41 |
3 | 63.4 | 27/26, 28/27, 29/28 |
4 | 84.5 | 41/39 |
5 | 105.7 | 33/31 |
6 | 126.8 | 14/13 |
7 | 147.9 | 37/34 |
8 | 169.1 | |
9 | 190.2 | 19/17, 29/26 |
10 | 211.3 | 26/23, 35/31 |
11 | 232.5 | |
12 | 253.6 | 22/19 |
13 | 274.7 | 34/29, 41/35 |
14 | 295.9 | |
15 | 317 | 6/5 |
16 | 338.1 | 17/14, 28/23 |
17 | 359.3 | |
18 | 380.4 | |
19 | 401.5 | 29/23, 34/27 |
20 | 422.7 | 23/18, 37/29 |
21 | 443.8 | 22/17 |
22 | 464.9 | 17/13 |
23 | 486.1 | 41/31 |
24 | 507.2 | |
25 | 528.3 | 19/14, 42/31 |
26 | 549.5 | |
27 | 570.6 | 25/18 |
28 | 591.7 | 31/22, 38/27 |
29 | 612.9 | 37/26 |
30 | 634 | 13/9, 36/25 |
31 | 655.1 | 19/13 |
32 | 676.3 | 31/21, 34/23, 37/25 |
33 | 697.4 | |
34 | 718.5 | |
35 | 739.6 | 23/15 |
36 | 760.8 | |
37 | 781.9 | 11/7 |
38 | 803 | 27/17, 35/22 |
39 | 824.2 | 29/18, 37/23 |
40 | 845.3 | 31/19 |
41 | 866.4 | 28/17, 38/23 |
42 | 887.6 | |
43 | 908.7 | 22/13 |
44 | 929.8 | |
45 | 951 | 26/15 |
46 | 972.1 | |
47 | 993.2 | 39/22 |
48 | 1014.4 | |
49 | 1035.5 | |
50 | 1056.6 | 35/19 |
51 | 1077.8 | 28/15, 41/22 |
52 | 1098.9 | 17/9 |
53 | 1120 | 21/11 |
54 | 1141.2 | 29/15 |
55 | 1162.3 | |
56 | 1183.4 | |
57 | 1204.6 | |
58 | 1225.7 | |
59 | 1246.8 | 37/18, 39/19 |
60 | 1268 | 25/12, 27/13 |
61 | 1289.1 | |
62 | 1310.2 | |
63 | 1331.4 | 41/19 |
64 | 1352.5 | |
65 | 1373.6 | 31/14, 42/19 |
66 | 1394.8 | 38/17 |
67 | 1415.9 | 34/15 |
68 | 1437 | 39/17 |
69 | 1458.2 | |
70 | 1479.3 | |
71 | 1500.4 | |
72 | 1521.6 | 41/17 |
73 | 1542.7 | |
74 | 1563.8 | 37/15, 42/17 |
75 | 1585 | 5/2 |
76 | 1606.1 | |
77 | 1627.2 | |
78 | 1648.4 | |
79 | 1669.5 | |
80 | 1690.6 | |
81 | 1711.8 | |
82 | 1732.9 | |
83 | 1754 | |
84 | 1775.2 | 39/14 |
85 | 1796.3 | 31/11 |
86 | 1817.4 | |
87 | 1838.6 | 26/9 |
88 | 1859.7 | 38/13, 41/14 |
89 | 1880.8 | |
90 | 1902 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +4.57 | +0.00 | +9.14 | +3.22 | +4.57 | -8.71 | -7.42 | +0.00 | +7.79 | -9.28 | +9.14 |
Relative (%) | +21.6 | +0.0 | +43.3 | +15.2 | +21.6 | -41.2 | -35.1 | +0.0 | +36.9 | -43.9 | +43.3 | |
Steps (reduced) |
57 (57) |
90 (0) |
114 (24) |
132 (42) |
147 (57) |
159 (69) |
170 (80) |
180 (0) |
189 (9) |
196 (16) |
204 (24) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.63 | -4.13 | +3.22 | -2.85 | -2.14 | +4.57 | -4.50 | -8.77 | -8.71 | -4.71 | +2.86 |
Relative (%) | -12.5 | -19.6 | +15.2 | -13.5 | -10.1 | +21.6 | -21.3 | -41.5 | -41.2 | -22.3 | +13.6 | |
Steps (reduced) |
210 (30) |
216 (36) |
222 (42) |
227 (47) |
232 (52) |
237 (57) |
241 (61) |
245 (65) |
249 (69) |
253 (73) |
257 (77) |