90edt
Jump to navigation
Jump to search
Prime factorization
2 × 32 × 5
Step size
21.1328¢
Octave
57\90edt (1204.57¢) (→19\30edt)
Consistency limit
5
Distinct consistency limit
5
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 89edt | 90edt | 91edt → |
90 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 90edt or 90ed3), is a nonoctave tuning system that divides the interval of 3/1 into 90 equal parts of about 21.1 ¢ each. Each step represents a frequency ratio of 31/90, or the 90th root of 3.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 21.133 | |
2 | 42.266 | 39/38, 42/41 |
3 | 63.399 | 27/26, 28/27, 29/28 |
4 | 84.531 | 41/39 |
5 | 105.664 | 33/31 |
6 | 126.797 | 14/13 |
7 | 147.93 | 37/34 |
8 | 169.063 | |
9 | 190.196 | 19/17, 29/26 |
10 | 211.328 | 26/23, 35/31 |
11 | 232.461 | |
12 | 253.594 | 22/19 |
13 | 274.727 | 34/29, 41/35 |
14 | 295.86 | |
15 | 316.993 | 6/5 |
16 | 338.125 | 17/14, 28/23 |
17 | 359.258 | |
18 | 380.391 | |
19 | 401.524 | 29/23, 34/27 |
20 | 422.657 | 23/18, 37/29 |
21 | 443.79 | 22/17 |
22 | 464.922 | 17/13 |
23 | 486.055 | 41/31 |
24 | 507.188 | |
25 | 528.321 | 19/14, 42/31 |
26 | 549.454 | |
27 | 570.587 | 25/18 |
28 | 591.719 | 31/22, 38/27 |
29 | 612.852 | 37/26 |
30 | 633.985 | 13/9, 36/25 |
31 | 655.118 | 19/13 |
32 | 676.251 | 31/21, 34/23, 37/25 |
33 | 697.384 | |
34 | 718.516 | |
35 | 739.649 | 23/15 |
36 | 760.782 | |
37 | 781.915 | 11/7 |
38 | 803.048 | 27/17, 35/22 |
39 | 824.181 | 29/18, 37/23 |
40 | 845.313 | 31/19 |
41 | 866.446 | 28/17, 38/23 |
42 | 887.579 | |
43 | 908.712 | 22/13 |
44 | 929.845 | |
45 | 950.978 | 26/15 |
46 | 972.11 | |
47 | 993.243 | 39/22 |
48 | 1014.376 | |
49 | 1035.509 | |
50 | 1056.642 | 35/19 |
51 | 1077.775 | 28/15, 41/22 |
52 | 1098.907 | 17/9 |
53 | 1120.04 | 21/11 |
54 | 1141.173 | 29/15 |
55 | 1162.306 | |
56 | 1183.439 | |
57 | 1204.572 | |
58 | 1225.704 | |
59 | 1246.837 | 37/18, 39/19 |
60 | 1267.97 | 25/12, 27/13 |
61 | 1289.103 | |
62 | 1310.236 | |
63 | 1331.369 | 41/19 |
64 | 1352.501 | |
65 | 1373.634 | 31/14, 42/19 |
66 | 1394.767 | 38/17 |
67 | 1415.9 | 34/15 |
68 | 1437.033 | 39/17 |
69 | 1458.166 | |
70 | 1479.298 | |
71 | 1500.431 | |
72 | 1521.564 | 41/17 |
73 | 1542.697 | |
74 | 1563.83 | 37/15, 42/17 |
75 | 1584.963 | 5/2 |
76 | 1606.095 | |
77 | 1627.228 | |
78 | 1648.361 | |
79 | 1669.494 | |
80 | 1690.627 | |
81 | 1711.76 | |
82 | 1732.892 | |
83 | 1754.025 | |
84 | 1775.158 | 39/14 |
85 | 1796.291 | 31/11 |
86 | 1817.424 | |
87 | 1838.557 | 26/9 |
88 | 1859.689 | 38/13, 41/14 |
89 | 1880.822 | |
90 | 1901.955 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +4.57 | +0.00 | +9.14 | +3.22 | +4.57 | -8.71 | -7.42 | +0.00 | +7.79 | -9.28 | +9.14 |
Relative (%) | +21.6 | +0.0 | +43.3 | +15.2 | +21.6 | -41.2 | -35.1 | +0.0 | +36.9 | -43.9 | +43.3 | |
Steps (reduced) |
57 (57) |
90 (0) |
114 (24) |
132 (42) |
147 (57) |
159 (69) |
170 (80) |
180 (0) |
189 (9) |
196 (16) |
204 (24) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.63 | -4.13 | +3.22 | -2.85 | -2.14 | +4.57 | -4.50 | -8.77 | -8.71 | -4.71 | +2.86 |
Relative (%) | -12.5 | -19.6 | +15.2 | -13.5 | -10.1 | +21.6 | -21.3 | -41.5 | -41.2 | -22.3 | +13.6 | |
Steps (reduced) |
210 (30) |
216 (36) |
222 (42) |
227 (47) |
232 (52) |
237 (57) |
241 (61) |
245 (65) |
249 (69) |
253 (73) |
257 (77) |