89edt
Jump to navigation
Jump to search
Prime factorization
89 (prime)
Step size
21.3703¢
Octave
56\89edt (1196.74¢)
Consistency limit
5
Distinct consistency limit
5
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 88edt | 89edt | 90edt → |
89 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 89edt or 89ed3), is a nonoctave tuning system that divides the interval of 3/1 into 89 equal parts of about 21.4 ¢ each. Each step represents a frequency ratio of 31/89, or the 89th root of 3.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 21.37 | |
2 | 42.741 | 39/38, 42/41 |
3 | 64.111 | 27/26, 28/27 |
4 | 85.481 | 41/39 |
5 | 106.851 | 33/31 |
6 | 128.222 | 14/13 |
7 | 149.592 | 12/11 |
8 | 170.962 | 21/19 |
9 | 192.333 | 19/17 |
10 | 213.703 | 26/23 |
11 | 235.073 | 39/34 |
12 | 256.443 | 36/31 |
13 | 277.814 | 27/23, 34/29 |
14 | 299.184 | |
15 | 320.554 | |
16 | 341.924 | 28/23 |
17 | 363.295 | 21/17 |
18 | 384.665 | 5/4 |
19 | 406.035 | |
20 | 427.406 | 32/25 |
21 | 448.776 | 35/27 |
22 | 470.146 | 38/29 |
23 | 491.516 | |
24 | 512.887 | 35/26, 39/29 |
25 | 534.257 | 15/11 |
26 | 555.627 | |
27 | 576.998 | |
28 | 598.368 | 41/29 |
29 | 619.738 | |
30 | 641.108 | 42/29 |
31 | 662.479 | 22/15, 41/28 |
32 | 683.849 | |
33 | 705.219 | |
34 | 726.59 | 35/23 |
35 | 747.96 | |
36 | 769.33 | |
37 | 790.7 | 41/26 |
38 | 812.071 | 8/5 |
39 | 833.441 | 34/21 |
40 | 854.811 | 18/11 |
41 | 876.182 | |
42 | 897.552 | |
43 | 918.922 | |
44 | 940.292 | 31/18 |
45 | 961.663 | |
46 | 983.033 | 37/21 |
47 | 1004.403 | |
48 | 1025.773 | 38/21 |
49 | 1047.144 | 11/6 |
50 | 1068.514 | |
51 | 1089.884 | 15/8 |
52 | 1111.255 | |
53 | 1132.625 | |
54 | 1153.995 | 35/18, 37/19 |
55 | 1175.365 | |
56 | 1196.736 | |
57 | 1218.106 | |
58 | 1239.476 | |
59 | 1260.847 | 29/14 |
60 | 1282.217 | |
61 | 1303.587 | |
62 | 1324.957 | |
63 | 1346.328 | 37/17 |
64 | 1367.698 | 11/5 |
65 | 1389.068 | 29/13 |
66 | 1410.439 | |
67 | 1431.809 | |
68 | 1453.179 | |
69 | 1474.549 | |
70 | 1495.92 | |
71 | 1517.29 | 12/5 |
72 | 1538.66 | 17/7 |
73 | 1560.031 | |
74 | 1581.401 | |
75 | 1602.771 | |
76 | 1624.141 | 23/9 |
77 | 1645.512 | 31/12 |
78 | 1666.882 | 34/13 |
79 | 1688.252 | |
80 | 1709.622 | |
81 | 1730.993 | 19/7 |
82 | 1752.363 | 11/4 |
83 | 1773.733 | 39/14 |
84 | 1795.104 | 31/11 |
85 | 1816.474 | |
86 | 1837.844 | 26/9 |
87 | 1859.214 | 38/13, 41/14 |
88 | 1880.585 | |
89 | 1901.955 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -3.26 | +0.00 | -6.53 | -8.18 | -3.26 | +7.68 | -9.79 | +0.00 | +9.93 | -5.48 | -6.53 |
Relative (%) | -15.3 | +0.0 | -30.5 | -38.3 | -15.3 | +35.9 | -45.8 | +0.0 | +46.5 | -25.7 | -30.5 | |
Steps (reduced) |
56 (56) |
89 (0) |
112 (23) |
130 (41) |
145 (56) |
158 (69) |
168 (79) |
178 (0) |
187 (9) |
194 (16) |
201 (23) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +4.49 | +4.41 | -8.18 | +8.31 | +10.21 | -3.26 | +9.98 | +6.66 | +7.68 | -8.75 | -0.22 |
Relative (%) | +21.0 | +20.7 | -38.3 | +38.9 | +47.8 | -15.3 | +46.7 | +31.2 | +35.9 | -40.9 | -1.0 | |
Steps (reduced) |
208 (30) |
214 (36) |
219 (41) |
225 (47) |
230 (52) |
234 (56) |
239 (61) |
243 (65) |
247 (69) |
250 (72) |
254 (76) |