89edt
Jump to navigation
Jump to search
Prime factorization
89 (prime)
Step size
21.3703¢
Octave
56\89edt (1196.74¢)
Consistency limit
5
Distinct consistency limit
5
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 88edt | 89edt | 90edt → |
89 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 89edt or 89ed3), is a nonoctave tuning system that divides the interval of 3/1 into 89 equal parts of about 21.4 ¢ each. Each step represents a frequency ratio of 31/89, or the 89th root of 3.
Intervals
Steps | Cents | Hekts | Approximate ratios |
---|---|---|---|
0 | 0 | 0 | 1/1 |
1 | 21.4 | 14.6 | |
2 | 42.7 | 29.2 | 39/38, 42/41 |
3 | 64.1 | 43.8 | 27/26, 28/27 |
4 | 85.5 | 58.4 | 41/39 |
5 | 106.9 | 73 | 33/31 |
6 | 128.2 | 87.6 | 14/13 |
7 | 149.6 | 102.2 | 12/11 |
8 | 171 | 116.9 | 21/19 |
9 | 192.3 | 131.5 | 19/17 |
10 | 213.7 | 146.1 | 26/23 |
11 | 235.1 | 160.7 | 39/34 |
12 | 256.4 | 175.3 | 36/31 |
13 | 277.8 | 189.9 | 27/23, 34/29 |
14 | 299.2 | 204.5 | |
15 | 320.6 | 219.1 | |
16 | 341.9 | 233.7 | 28/23 |
17 | 363.3 | 248.3 | 21/17 |
18 | 384.7 | 262.9 | 5/4 |
19 | 406 | 277.5 | |
20 | 427.4 | 292.1 | 32/25 |
21 | 448.8 | 306.7 | 35/27 |
22 | 470.1 | 321.3 | 38/29 |
23 | 491.5 | 336 | |
24 | 512.9 | 350.6 | 35/26, 39/29 |
25 | 534.3 | 365.2 | 15/11 |
26 | 555.6 | 379.8 | |
27 | 577 | 394.4 | |
28 | 598.4 | 409 | 41/29 |
29 | 619.7 | 423.6 | |
30 | 641.1 | 438.2 | 42/29 |
31 | 662.5 | 452.8 | 22/15, 41/28 |
32 | 683.8 | 467.4 | |
33 | 705.2 | 482 | |
34 | 726.6 | 496.6 | 35/23 |
35 | 748 | 511.2 | |
36 | 769.3 | 525.8 | |
37 | 790.7 | 540.4 | 41/26 |
38 | 812.1 | 555.1 | 8/5 |
39 | 833.4 | 569.7 | 34/21 |
40 | 854.8 | 584.3 | 18/11 |
41 | 876.2 | 598.9 | |
42 | 897.6 | 613.5 | |
43 | 918.9 | 628.1 | |
44 | 940.3 | 642.7 | 31/18 |
45 | 961.7 | 657.3 | |
46 | 983 | 671.9 | 37/21 |
47 | 1004.4 | 686.5 | |
48 | 1025.8 | 701.1 | 38/21 |
49 | 1047.1 | 715.7 | 11/6 |
50 | 1068.5 | 730.3 | |
51 | 1089.9 | 744.9 | 15/8 |
52 | 1111.3 | 759.6 | |
53 | 1132.6 | 774.2 | |
54 | 1154 | 788.8 | 35/18, 37/19 |
55 | 1175.4 | 803.4 | |
56 | 1196.7 | 818 | |
57 | 1218.1 | 832.6 | |
58 | 1239.5 | 847.2 | |
59 | 1260.8 | 861.8 | 29/14 |
60 | 1282.2 | 876.4 | |
61 | 1303.6 | 891 | |
62 | 1325 | 905.6 | |
63 | 1346.3 | 920.2 | 37/17 |
64 | 1367.7 | 934.8 | 11/5 |
65 | 1389.1 | 949.4 | 29/13 |
66 | 1410.4 | 964 | |
67 | 1431.8 | 978.7 | |
68 | 1453.2 | 993.3 | |
69 | 1474.5 | 1007.9 | |
70 | 1495.9 | 1022.5 | |
71 | 1517.3 | 1037.1 | 12/5 |
72 | 1538.7 | 1051.7 | 17/7 |
73 | 1560 | 1066.3 | |
74 | 1581.4 | 1080.9 | |
75 | 1602.8 | 1095.5 | |
76 | 1624.1 | 1110.1 | 23/9 |
77 | 1645.5 | 1124.7 | 31/12 |
78 | 1666.9 | 1139.3 | 34/13 |
79 | 1688.3 | 1153.9 | |
80 | 1709.6 | 1168.5 | |
81 | 1731 | 1183.1 | 19/7 |
82 | 1752.4 | 1197.8 | 11/4 |
83 | 1773.7 | 1212.4 | 39/14 |
84 | 1795.1 | 1227 | 31/11 |
85 | 1816.5 | 1241.6 | |
86 | 1837.8 | 1256.2 | 26/9 |
87 | 1859.2 | 1270.8 | 38/13, 41/14 |
88 | 1880.6 | 1285.4 | |
89 | 1902 | 1300 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -3.26 | +0.00 | -6.53 | -8.18 | -3.26 | +7.68 | -9.79 | +0.00 | +9.93 | -5.48 | -6.53 |
Relative (%) | -15.3 | +0.0 | -30.5 | -38.3 | -15.3 | +35.9 | -45.8 | +0.0 | +46.5 | -25.7 | -30.5 | |
Steps (reduced) |
56 (56) |
89 (0) |
112 (23) |
130 (41) |
145 (56) |
158 (69) |
168 (79) |
178 (0) |
187 (9) |
194 (16) |
201 (23) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +4.49 | +4.41 | -8.18 | +8.31 | +10.21 | -3.26 | +9.98 | +6.66 | +7.68 | -8.75 | -0.22 |
Relative (%) | +21.0 | +20.7 | -38.3 | +38.9 | +47.8 | -15.3 | +46.7 | +31.2 | +35.9 | -40.9 | -1.0 | |
Steps (reduced) |
208 (30) |
214 (36) |
219 (41) |
225 (47) |
230 (52) |
234 (56) |
239 (61) |
243 (65) |
247 (69) |
250 (72) |
254 (76) |