88edt
Jump to navigation
Jump to search
Prime factorization
23 × 11
Step size
21.6131¢
Octave
56\88edt (1210.34¢) (→7\11edt)
Consistency limit
2
Distinct consistency limit
2
← 87edt | 88edt | 89edt → |
88EDT is the equal division of the third harmonic into 88 parts of 21.6131 cents each, corresponding to 55.5218 edo (similar to every second step of 111edo). It is consistent to the no-twos 11-limit, tempering out 1331/1323, 16875/16807, and 216513/214375. In the 3.4.5.7.11 subgroup, it tempers out 176/175, 540/539, 1331/1323, and 5120/5103.
88EDT is the 15th no-twos zeta peak EDT.
Harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +10.34 | +0.00 | +1.78 | +2.82 | -1.60 | -9.84 | +1.22 | +3.18 | -3.38 | +5.97 | -1.43 |
Relative (%) | +47.8 | +0.0 | +8.2 | +13.1 | -7.4 | -45.5 | +5.7 | +14.7 | -15.6 | +27.6 | -6.6 | |
Steps (reduced) |
56 (56) |
88 (0) |
129 (41) |
156 (68) |
192 (16) |
205 (29) |
227 (51) |
236 (60) |
251 (75) |
270 (6) |
275 (11) |
Harmonic | 37 | 41 | 43 | 47 | 53 | 59 | 61 | 67 | 71 | 73 | 79 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -5.15 | -9.96 | -5.97 | -8.66 | -0.53 | +8.32 | -6.17 | +4.32 | -9.62 | +7.13 | +0.06 |
Relative (%) | -23.8 | -46.1 | -27.6 | -40.1 | -2.5 | +38.5 | -28.5 | +20.0 | -44.5 | +33.0 | +0.3 | |
Steps (reduced) |
289 (25) |
297 (33) |
301 (37) |
308 (44) |
318 (54) |
327 (63) |
329 (65) |
337 (73) |
341 (77) |
344 (80) |
350 (86) |
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 21.6 | |
2 | 43.2 | |
3 | 64.8 | 27/26 |
4 | 86.5 | 41/39 |
5 | 108.1 | 33/31 |
6 | 129.7 | |
7 | 151.3 | |
8 | 172.9 | 21/19 |
9 | 194.5 | 19/17 |
10 | 216.1 | 17/15 |
11 | 237.7 | 31/27 |
12 | 259.4 | 29/25 |
13 | 281 | |
14 | 302.6 | 25/21, 31/26 |
15 | 324.2 | 35/29 |
16 | 345.8 | 11/9 |
17 | 367.4 | 21/17, 26/21 |
18 | 389 | |
19 | 410.6 | 19/15, 33/26 |
20 | 432.3 | 9/7 |
21 | 453.9 | |
22 | 475.5 | 25/19, 29/22 |
23 | 497.1 | |
24 | 518.7 | 31/23 |
25 | 540.3 | 26/19 |
26 | 561.9 | |
27 | 583.6 | 7/5 |
28 | 605.2 | |
29 | 626.8 | 33/23 |
30 | 648.4 | |
31 | 670 | 25/17 |
32 | 691.6 | |
33 | 713.2 | |
34 | 734.8 | 26/17, 29/19 |
35 | 756.5 | 17/11 |
36 | 778.1 | |
37 | 799.7 | 27/17 |
38 | 821.3 | 37/23 |
39 | 842.9 | |
40 | 864.5 | |
41 | 886.1 | 5/3 |
42 | 907.8 | |
43 | 929.4 | |
44 | 951 | 26/15 |
45 | 972.6 | |
46 | 994.2 | |
47 | 1015.8 | 9/5 |
48 | 1037.4 | 31/17 |
49 | 1059 | 35/19 |
50 | 1080.7 | |
51 | 1102.3 | 17/9 |
52 | 1123.9 | |
53 | 1145.5 | 33/17 |
54 | 1167.1 | |
55 | 1188.7 | |
56 | 1210.3 | |
57 | 1231.9 | |
58 | 1253.6 | |
59 | 1275.2 | 23/11 |
60 | 1296.8 | |
61 | 1318.4 | 15/7 |
62 | 1340 | |
63 | 1361.6 | |
64 | 1383.2 | |
65 | 1404.9 | |
66 | 1426.5 | |
67 | 1448.1 | |
68 | 1469.7 | 7/3 |
69 | 1491.3 | 26/11 |
70 | 1512.9 | |
71 | 1534.5 | 17/7 |
72 | 1556.1 | 27/11 |
73 | 1577.8 | |
74 | 1599.4 | |
75 | 1621 | |
76 | 1642.6 | |
77 | 1664.2 | |
78 | 1685.8 | |
79 | 1707.4 | |
80 | 1729.1 | 19/7 |
81 | 1750.7 | |
82 | 1772.3 | |
83 | 1793.9 | 31/11 |
84 | 1815.5 | |
85 | 1837.1 | 26/9 |
86 | 1858.7 | |
87 | 1880.3 | |
88 | 1902 | 3/1 |