111edo
← 110edo | 111edo | 112edo → |
111 equal divisions of the octave (abbreviated 111edo or 111ed2), also called 111-tone equal temperament (111tet) or 111 equal temperament (111et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 111 equal parts of about 10.8 ¢ each. Each step represents a frequency ratio of 21/111, or the 111th root of 2.
Theory
111edo is consistent through to the 21-odd-limit, and is the smallest edo uniquely consistent through the 15-odd-limit, marking it as an important higher limit tuning. It has a sharp tendency, with harmonics 3 through 19 all tuned sharp. 111 = 3 × 37, and 111edo shares the mappings for 5, 7, 11, and 13 with 37edo.
It is also significant for lower limits, especially in terms of what it tempers out in its patent val; for example, it tempers out 176/175 and gives an excellent optimal patent val for the corresponding 11-limit rank-4 temperament.
In fact in the 7-limit it tempers out 1728/1715, 3136/3125 and 5120/5103, and in the 11-limit, 176/175, 540/539, 1331/1323, 1375/1372, and notably the quartisma.
It is a particularly good tuning for the 11- or 13-limit versions of semisept, the 31 & 80 temperament, and buzzard, the 53 & 58 temperament. Gene Ward Smith's trio in #Music section is in guanyin temperament, the planar temperament tempering out 176/175 and 540/539, for which 111 also provides the optimal patent val.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | +0.75 | +2.88 | +4.15 | +0.03 | +2.72 | +3.15 | +5.19 | -1.25 | -2.55 | +0.91 |
Relative (%) | +0.0 | +6.9 | +26.6 | +38.4 | +0.3 | +25.1 | +29.2 | +48.0 | -11.5 | -23.6 | +8.4 | |
Steps (reduced) |
111 (0) |
176 (65) |
258 (36) |
312 (90) |
384 (51) |
411 (78) |
454 (10) |
472 (28) |
502 (58) |
539 (95) |
550 (106) |
Subsets and supersets
333edo, which slices the step of 111edo in three, is a significant tuning.
Intervals
Steps | Cents | Approximate Ratios | Ups and Downs Notation |
---|---|---|---|
0 | 0 | 1/1 | D |
1 | 10.811 | ^D, v7E♭ | |
2 | 21.622 | 78/77, 81/80 | ^^D, v6E♭ |
3 | 32.432 | 50/49, 55/54, 56/55 | ^3D, v5E♭ |
4 | 43.243 | 40/39, 77/75 | ^4D, v4E♭ |
5 | 54.054 | 33/32, 65/63 | ^5D, v3E♭ |
6 | 64.865 | 26/25, 27/26, 28/27, 80/77 | ^6D, vvE♭ |
7 | 75.676 | ^7D, vE♭ | |
8 | 86.486 | 21/20, 81/77 | ^8D, E♭ |
9 | 97.297 | 55/52 | ^9D, v10E |
10 | 108.108 | 16/15 | ^10D, v9E |
11 | 118.919 | 15/14, 77/72 | D♯, v8E |
12 | 129.73 | 14/13, 27/25 | ^D♯, v7E |
13 | 140.541 | 13/12 | ^^D♯, v6E |
14 | 151.351 | 12/11, 49/45 | ^3D♯, v5E |
15 | 162.162 | 11/10 | ^4D♯, v4E |
16 | 172.973 | 72/65 | ^5D♯, v3E |
17 | 183.784 | 10/9, 39/35 | ^6D♯, vvE |
18 | 194.595 | 28/25 | ^7D♯, vE |
19 | 205.405 | 9/8, 44/39 | E |
20 | 216.216 | ^E, v7F | |
21 | 227.027 | 8/7 | ^^E, v6F |
22 | 237.838 | 55/48, 63/55 | ^3E, v5F |
23 | 248.649 | 15/13, 52/45, 81/70 | ^4E, v4F |
24 | 259.459 | 64/55, 65/56 | ^5E, v3F |
25 | 270.27 | 7/6 | ^6E, vvF |
26 | 281.081 | 33/28 | ^7E, vF |
27 | 291.892 | 13/11, 32/27, 77/65 | F |
28 | 302.703 | 25/21 | ^F, v7G♭ |
29 | 313.514 | 6/5 | ^^F, v6G♭ |
30 | 324.324 | 65/54, 77/64 | ^3F, v5G♭ |
31 | 335.135 | 40/33, 63/52 | ^4F, v4G♭ |
32 | 345.946 | 11/9, 39/32 | ^5F, v3G♭ |
33 | 356.757 | 16/13, 27/22 | ^6F, vvG♭ |
34 | 367.568 | 26/21 | ^7F, vG♭ |
35 | 378.378 | 56/45, 81/65 | ^8F, G♭ |
36 | 389.189 | 5/4 | ^9F, v10G |
37 | 400 | 63/50 | ^10F, v9G |
38 | 410.811 | 33/26, 80/63, 81/64 | F♯, v8G |
39 | 421.622 | 14/11 | ^F♯, v7G |
40 | 432.432 | 9/7, 50/39, 77/60 | ^^F♯, v6G |
41 | 443.243 | ^3F♯, v5G | |
42 | 454.054 | 13/10 | ^4F♯, v4G |
43 | 464.865 | 55/42, 72/55 | ^5F♯, v3G |
44 | 475.676 | ^6F♯, vvG | |
45 | 486.486 | 65/49 | ^7F♯, vG |
46 | 497.297 | 4/3 | G |
47 | 508.108 | 75/56 | ^G, v7A♭ |
48 | 518.919 | 27/20, 35/26 | ^^G, v6A♭ |
49 | 529.73 | ^3G, v5A♭ | |
50 | 540.541 | 15/11 | ^4G, v4A♭ |
51 | 551.351 | 11/8 | ^5G, v3A♭ |
52 | 562.162 | 18/13 | ^6G, vvA♭ |
53 | 572.973 | 25/18, 39/28 | ^7G, vA♭ |
54 | 583.784 | 7/5 | ^8G, A♭ |
55 | 594.595 | 55/39 | ^9G, v10A |
56 | 605.405 | 78/55 | ^10G, v9A |
57 | 616.216 | 10/7, 77/54 | G♯, v8A |
58 | 627.027 | 36/25, 56/39 | ^G♯, v7A |
59 | 637.838 | 13/9, 75/52, 81/56 | ^^G♯, v6A |
60 | 648.649 | 16/11 | ^3G♯, v5A |
61 | 659.459 | 22/15 | ^4G♯, v4A |
62 | 670.27 | 81/55 | ^5G♯, v3A |
63 | 681.081 | 40/27, 52/35, 77/52 | ^6G♯, vvA |
64 | 691.892 | ^7G♯, vA | |
65 | 702.703 | 3/2 | A |
66 | 713.514 | ^A, v7B♭ | |
67 | 724.324 | ^^A, v6B♭ | |
68 | 735.135 | 55/36, 75/49 | ^3A, v5B♭ |
69 | 745.946 | 20/13, 77/50 | ^4A, v4B♭ |
70 | 756.757 | 65/42 | ^5A, v3B♭ |
71 | 767.568 | 14/9, 39/25, 81/52 | ^6A, vvB♭ |
72 | 778.378 | 11/7 | ^7A, vB♭ |
73 | 789.189 | 52/33, 63/40 | ^8A, B♭ |
74 | 800 | ^9A, v10B | |
75 | 810.811 | 8/5 | ^10A, v9B |
76 | 821.622 | 45/28, 77/48 | A♯, v8B |
77 | 832.432 | 21/13, 81/50 | ^A♯, v7B |
78 | 843.243 | 13/8, 44/27 | ^^A♯, v6B |
79 | 854.054 | 18/11, 64/39 | ^3A♯, v5B |
80 | 864.865 | 33/20 | ^4A♯, v4B |
81 | 875.676 | ^5A♯, v3B | |
82 | 886.486 | 5/3 | ^6A♯, vvB |
83 | 897.297 | 42/25 | ^7A♯, vB |
84 | 908.108 | 22/13, 27/16 | B |
85 | 918.919 | 56/33 | ^B, v7C |
86 | 929.73 | 12/7, 77/45 | ^^B, v6C |
87 | 940.541 | 55/32 | ^3B, v5C |
88 | 951.351 | 26/15, 45/26 | ^4B, v4C |
89 | 962.162 | ^5B, v3C | |
90 | 972.973 | 7/4 | ^6B, vvC |
91 | 983.784 | ^7B, vC | |
92 | 994.595 | 16/9, 39/22 | C |
93 | 1005.405 | 25/14 | ^C, v7D♭ |
94 | 1016.216 | 9/5, 70/39 | ^^C, v6D♭ |
95 | 1027.027 | 65/36 | ^3C, v5D♭ |
96 | 1037.838 | 20/11 | ^4C, v4D♭ |
97 | 1048.649 | 11/6 | ^5C, v3D♭ |
98 | 1059.459 | 24/13, 81/44 | ^6C, vvD♭ |
99 | 1070.27 | 13/7, 50/27 | ^7C, vD♭ |
100 | 1081.081 | 28/15 | ^8C, D♭ |
101 | 1091.892 | 15/8 | ^9C, v10D |
102 | 1102.703 | ^10C, v9D | |
103 | 1113.514 | 40/21 | C♯, v8D |
104 | 1124.324 | ^C♯, v7D | |
105 | 1135.135 | 25/13, 27/14, 52/27, 77/40 | ^^C♯, v6D |
106 | 1145.946 | 64/33 | ^3C♯, v5D |
107 | 1156.757 | 39/20 | ^4C♯, v4D |
108 | 1167.568 | 49/25, 55/28 | ^5C♯, v3D |
109 | 1178.378 | 77/39 | ^6C♯, vvD |
110 | 1189.189 | ^7C♯, vD | |
111 | 1200 | 2/1 | D |
Regular temperament properties
Subgroup | Comma List | Mapping | Optimal 8ve Stretch (¢) |
Tuning Error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [176 -111⟩ | [⟨111 176]] | -0.236 | 0.236 | 2.18 |
2.3.5 | 78732/78125, 67108864/66430125 | [⟨111 176 258]] | -0.570 | 0.510 | 4.72 |
2.3.5.7 | 1728/1715, 3136/3125, 5120/5103 | [⟨111 176 258 312]] | -0.797 | 0.591 | 5.47 |
2.3.5.7.11 | 176/175, 540/539, 1331/1323, 5120/5103 | [⟨111 176 258 312 384]] | -0.639 | 0.615 | 5.69 |
2.3.5.7.11.13 | 176/175, 351/350, 540/539, 676/675, 1331/1323 | [⟨111 176 258 312 384 411]] | -0.655 | 0.562 | 5.21 |
2.3.5.7.11.13.17 | 176/175, 256/255, 351/350, 442/441, 540/539, 715/714 | [⟨111 176 258 312 384 411 454]] | -0.672 | 0.523 | 4.84 |
2.3.5.7.11.13.17.19 | 176/175, 256/255, 286/285, 324/323, 351/350, 400/399, 476/475 | [⟨111 176 258 312 384 411 454 472]] | -0.740 | 0.521 | 4.83 |
- 111et has lower absolute errors than any previous equal temperaments in the 13-, 17-, 19-, and 23-limit, beating 94 and 103h before being superseded by 121i.
Rank-2 temperaments
Note: 2.5.7.11.13 subgroup temperaments supported by 37edo are not listed.
Periods per 8ve |
Generator* | Cents* | Associated Ratio* |
Temperament |
---|---|---|---|---|
1 | 11\111 | 118.92 | 15/14 | Subsedia |
1 | 13\111 | 140.54 | 13/12 | Quanic |
1 | 14\111 | 151.35 | 12/11 | Browser |
1 | 16\111 | 172.97 | 400/363 | Undetrita |
1 | 20\111 | 216.22 | 17/15 | Tremka |
1 | 23\111 | 248.65 | 15/13 | Hemikwai |
1 | 31\111 | 335.14 | 17/14 | Cohemimabila |
1 | 35\111 | 378.38 | 56/45 | Subpental |
1 | 41\111 | 443.24 | 22/17 | Warrior |
1 | 43\111 | 464.86 | 17/13 | Semisept |
1 | 44\111 | 475.68 | 21/16 | Buzzard |
1 | 46\111 | 497.30 | 4/3 | Kwai |
1 | 49\111 | 529.73 | 19/14 | Tuskaloosa |
1 | 55\111 | 594.59 | 55/39 | Gaster |
3 | 7\111 | 75.68 | 24/23 | Terture |
3 | 12\111 | 129.73 | 14/13 | Trimabila |
3 | 13\111 | 140.54 | 243/224 | Septichrome |
3 | 17\111 | 183.55 | 10/9 | Mirkat |
3 | 23\111 (14\111) |
248.65 (151.35) |
15/13 (12/11) |
Hemimist |
3 | 46\111 (9\111) |
497.30 (97.30) |
4/3 (18/17~19/18) |
Misty |
* octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct
Scales
- Direct sunlight (subset of Sensi[19]): 5 7 34 19 5 36 5 ((5, 12, 46, 65, 70, 106, 111)\111)
- Hypersakura (subset of Sensi[19]): 5 41 19 5 41 ((5, 46, 65, 70, 111)\111)
Music
- Trio for SoftSaturn, NebulaSing and TromBonehead (archived 2010) – SoundCloud | details | play – guanyin[22] in 111edo tuning