There are many conceivable ways to map 111edo onto the onto the Lumatone keyboard. Only one, however, agrees with the Standard Lumatone mapping for Pythagorean.
Diatonic
However, due to the size of the edo, this will only cover half of the notes unless expanded from 5L 2s to 12L 5s, reducing the range commensurately.
5L 2s
6
25
14
33
52
71
90
3
22
41
60
79
98
6
25
11
30
49
68
87
106
14
33
52
71
90
0
19
38
57
76
95
3
22
41
60
79
98
6
25
8
27
46
65
84
103
11
30
49
68
87
106
14
33
52
71
90
108
16
35
54
73
92
0
19
38
57
76
95
3
22
41
60
79
98
6
25
5
24
43
62
81
100
8
27
46
65
84
103
11
30
49
68
87
106
14
33
52
71
90
105
13
32
51
70
89
108
16
35
54
73
92
0
19
38
57
76
95
3
22
41
60
79
98
6
25
21
40
59
78
97
5
24
43
62
81
100
8
27
46
65
84
103
11
30
49
68
87
106
14
33
52
71
90
67
86
105
13
32
51
70
89
108
16
35
54
73
92
0
19
38
57
76
95
3
22
41
60
79
98
21
40
59
78
97
5
24
43
62
81
100
8
27
46
65
84
103
11
30
49
68
87
106
67
86
105
13
32
51
70
89
108
16
35
54
73
92
0
19
38
57
76
95
21
40
59
78
97
5
24
43
62
81
100
8
27
46
65
84
103
67
86
105
13
32
51
70
89
108
16
35
54
73
92
21
40
59
78
97
5
24
43
62
81
100
67
86
105
13
32
51
70
89
21
40
59
78
97
67
86
12L 5s
4
12
7
15
23
31
39
2
10
18
26
34
42
50
58
5
13
21
29
37
45
53
61
69
77
85
0
8
16
24
32
40
48
56
64
72
80
88
96
104
3
11
19
27
35
43
51
59
67
75
83
91
99
107
4
12
20
109
6
14
22
30
38
46
54
62
70
78
86
94
102
110
7
15
23
31
39
1
9
17
25
33
41
49
57
65
73
81
89
97
105
2
10
18
26
34
42
50
58
66
107
4
12
20
28
36
44
52
60
68
76
84
92
100
108
5
13
21
29
37
45
53
61
69
77
85
7
15
23
31
39
47
55
63
71
79
87
95
103
0
8
16
24
32
40
48
56
64
72
80
88
96
104
1
26
34
42
50
58
66
74
82
90
98
106
3
11
19
27
35
43
51
59
67
75
83
91
99
107
4
53
61
69
77
85
93
101
109
6
14
22
30
38
46
54
62
70
78
86
94
102
110
7
72
80
88
96
104
1
9
17
25
33
41
49
57
65
73
81
89
97
105
2
99
107
4
12
20
28
36
44
52
60
68
76
84
92
100
108
5
7
15
23
31
39
47
55
63
71
79
87
95
103
0
34
42
50
58
66
74
82
90
98
106
3
53
61
69
77
85
93
101
109
80
88
96
104
1
99
107
There is an alternate diatonic scale that makes near perfect 5-limit chords easy to play, but it has an octave stretch of approximately half a syntonic comma. Since you can access every note in some of the octaves, this may actually be advantageous.
103
10
3
21
39
57
75
107
14
32
50
68
86
104
11
7
25
43
61
79
97
4
22
40
58
76
0
18
36
54
72
90
108
15
33
51
69
87
105
12
11
29
47
65
83
101
8
26
44
62
80
98
5
23
41
59
77
4
22
40
58
76
94
1
19
37
55
73
91
109
16
34
52
70
88
106
13
15
33
51
69
87
105
12
30
48
66
84
102
9
27
45
63
81
99
6
24
42
60
78
8
26
44
62
80
98
5
23
41
59
77
95
2
20
38
56
74
92
110
17
35
53
71
89
107
14
37
55
73
91
109
16
34
52
70
88
106
13
31
49
67
85
103
10
28
46
64
82
100
7
25
43
61
79
84
102
9
27
45
63
81
99
6
24
42
60
78
96
3
21
39
57
75
93
0
18
36
54
72
90
38
56
74
92
110
17
35
53
71
89
107
14
32
50
68
86
104
11
29
47
65
83
101
85
103
10
28
46
64
82
100
7
25
43
61
79
97
4
22
40
58
76
94
39
57
75
93
0
18
36
54
72
90
108
15
33
51
69
87
105
86
104
11
29
47
65
83
101
8
26
44
62
80
98
40
58
76
94
1
19
37
55
73
91
109
87
105
12
30
48
66
84
102
41
59
77
95
2
88
106
Misty
Keeping the same generator but dividing the period in three gives you Misty. 111edo is not quite as optimal a tuning for this temperament as 99edo, but it still supports it and the 12L 3s mapping can cover all the notes with slightly greater range than the diatonic one.
14
23
15
24
33
42
51
7
16
25
34
43
52
61
70
8
17
26
35
44
53
62
71
80
89
98
0
9
18
27
36
45
54
63
72
81
90
99
108
6
1
10
19
28
37
46
55
64
73
82
91
100
109
7
16
25
34
104
2
11
20
29
38
47
56
65
74
83
92
101
110
8
17
26
35
44
53
105
3
12
21
30
39
48
57
66
75
84
93
102
0
9
18
27
36
45
54
63
72
81
97
106
4
13
22
31
40
49
58
67
76
85
94
103
1
10
19
28
37
46
55
64
73
82
91
100
107
5
14
23
32
41
50
59
68
77
86
95
104
2
11
20
29
38
47
56
65
74
83
92
101
110
8
17
15
24
33
42
51
60
69
78
87
96
105
3
12
21
30
39
48
57
66
75
84
93
102
0
9
18
43
52
61
70
79
88
97
106
4
13
22
31
40
49
58
67
76
85
94
103
1
10
19
62
71
80
89
98
107
5
14
23
32
41
50
59
68
77
86
95
104
2
11
90
99
108
6
15
24
33
42
51
60
69
78
87
96
105
3
12
109
7
16
25
34
43
52
61
70
79
88
97
106
4
26
35
44
53
62
71
80
89
98
107
5
45
54
63
72
81
90
99
108
73
82
91
100
109
92
101
Other Mappings
The 5L 9s Hemikwai mapping covers all the notes in the central octave with slightly greater range still and makes the near perfectly tuned barbados subgroup chords very easy to play, but is quite lopsided and misses out many at the edges.
85
89
100
104
108
1
5
0
4
8
12
16
20
24
28
15
19
23
27
31
35
39
43
47
51
55
26
30
34
38
42
46
50
54
58
62
66
70
74
78
41
45
49
53
57
61
65
69
73
77
81
85
89
93
97
101
105
52
56
60
64
68
72
76
80
84
88
92
96
100
104
108
1
5
9
13
17
67
71
75
79
83
87
91
95
99
103
107
0
4
8
12
16
20
24
28
32
36
40
44
78
82
86
90
94
98
102
106
110
3
7
11
15
19
23
27
31
35
39
43
47
51
55
59
63
67
97
101
105
109
2
6
10
14
18
22
26
30
34
38
42
46
50
54
58
62
66
70
74
78
82
86
90
94
9
13
17
21
25
29
33
37
41
45
49
53
57
61
65
69
73
77
81
85
89
93
97
101
105
109
36
40
44
48
52
56
60
64
68
72
76
80
84
88
92
96
100
104
108
1
5
9
13
59
63
67
71
75
79
83
87
91
95
99
103
107
0
4
8
12
16
20
24
86
90
94
98
102
106
110
3
7
11
15
19
23
27
31
35
39
109
2
6
10
14
18
22
26
30
34
38
42
46
50
25
29
33
37
41
45
49
53
57
61
65
48
52
56
60
64
68
72
76
75
79
83
87
91
98
102
Buzzard is another quite efficient option, although the 5L 8s mapping does not quite cover all the notes and is even more lopsided.
75
77
94
96
98
100
102
0
2
4
6
8
10
12
14
19
21
23
25
27
29
31
33
35
37
39
36
38
40
42
44
46
48
50
52
54
56
58
60
62
55
57
59
61
63
65
67
69
71
73
75
77
79
81
83
85
87
72
74
76
78
80
82
84
86
88
90
92
94
96
98
100
102
104
106
108
110
91
93
95
97
99
101
103
105
107
109
0
2
4
6
8
10
12
14
16
18
20
22
24
108
110
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62
64
66
68
70
72
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75
77
79
81
83
85
87
89
91
66
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98
100
102
104
106
108
110
89
91
93
95
97
99
101
103
105
107
109
0
2
4
6
8
10
12
14
16
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
26
28
30
32
34
36
38
40
42
44
46
48
50
52
51
53
55
57
59
61
63
65
67
69
71
74
76
78
80
82
84
86
88
99
101
103
105
107
11
13