There are many conceivable ways to map 110edo onto the onto the Lumatone keyboard. However, it has 2 mutually-exclusive rings of 55edo fifths, so the Standard Lumatone mapping for Pythagorean is not one of them. The second best 5th produces 5 unconnected rings of 22edo fifths, so that doesn't work either. The third best fifth is diatonic, but barely sharper than 7edo and only covers half the notes due to the size of the edo.
Diatonic
82
98
97
3
19
35
51
96
2
18
34
50
66
82
98
1
17
33
49
65
81
97
3
19
35
51
0
16
32
48
64
80
96
2
18
34
50
66
82
98
15
31
47
63
79
95
1
17
33
49
65
81
97
3
19
35
51
14
30
46
62
78
94
0
16
32
48
64
80
96
2
18
34
50
66
82
98
29
45
61
77
93
109
15
31
47
63
79
95
1
17
33
49
65
81
97
3
19
35
51
28
44
60
76
92
108
14
30
46
62
78
94
0
16
32
48
64
80
96
2
18
34
50
66
82
98
59
75
91
107
13
29
45
61
77
93
109
15
31
47
63
79
95
1
17
33
49
65
81
97
3
19
35
51
106
12
28
44
60
76
92
108
14
30
46
62
78
94
0
16
32
48
64
80
96
2
18
34
50
66
59
75
91
107
13
29
45
61
77
93
109
15
31
47
63
79
95
1
17
33
49
65
81
106
12
28
44
60
76
92
108
14
30
46
62
78
94
0
16
32
48
64
80
59
75
91
107
13
29
45
61
77
93
109
15
31
47
63
79
95
106
12
28
44
60
76
92
108
14
30
46
62
78
94
59
75
91
107
13
29
45
61
77
93
109
106
12
28
44
60
76
92
108
59
75
91
107
13
106
12
Other Mappings
Since the lumatone is designed to neatly accommodate the 55edo diatonic scale with no skips and a minimum of repetition, the mappings that work best for 110edo are the ones that divide it in two in some way. The fifth is already divisible by two to create a neutral thirds scale, so that doesn't work, but dividing the fourth in two produces a 5L 9s scale with a range of 3 octaves that covers all the notes in the central octave with a mild downward slope.
76
81
89
94
99
104
109
97
102
107
2
7
12
17
22
0
5
10
15
20
25
30
35
40
45
50
8
13
18
23
28
33
38
43
48
53
58
63
68
73
21
26
31
36
41
46
51
56
61
66
71
76
81
86
91
96
101
29
34
39
44
49
54
59
64
69
74
79
84
89
94
99
104
109
4
9
14
42
47
52
57
62
67
72
77
82
87
92
97
102
107
2
7
12
17
22
27
32
37
42
50
55
60
65
70
75
80
85
90
95
100
105
0
5
10
15
20
25
30
35
40
45
50
55
60
65
68
73
78
83
88
93
98
103
108
3
8
13
18
23
28
33
38
43
48
53
58
63
68
73
78
83
88
93
91
96
101
106
1
6
11
16
21
26
31
36
41
46
51
56
61
66
71
76
81
86
91
96
101
106
9
14
19
24
29
34
39
44
49
54
59
64
69
74
79
84
89
94
99
104
109
4
9
32
37
42
47
52
57
62
67
72
77
82
87
92
97
102
107
2
7
12
17
60
65
70
75
80
85
90
95
100
105
0
5
10
15
20
25
30
83
88
93
98
103
108
3
8
13
18
23
28
33
38
1
6
11
16
21
26
31
36
41
46
51
24
29
34
39
44
49
54
59
52
57
62
67
72
75
80
Slicing both generator and period in two produces a perfectly level 10L 4s scale that covers all the notes with a range of 2 & 1/2 octaves.
108
7
3
12
21
30
39
109
8
17
26
35
44
53
62
4
13
22
31
40
49
58
67
76
85
94
0
9
18
27
36
45
54
63
72
81
90
99
108
7
5
14
23
32
41
50
59
68
77
86
95
104
3
12
21
30
39
1
10
19
28
37
46
55
64
73
82
91
100
109
8
17
26
35
44
53
62
6
15
24
33
42
51
60
69
78
87
96
105
4
13
22
31
40
49
58
67
76
85
94
2
11
20
29
38
47
56
65
74
83
92
101
0
9
18
27
36
45
54
63
72
81
90
99
108
7
16
25
34
43
52
61
70
79
88
97
106
5
14
23
32
41
50
59
68
77
86
95
104
3
12
21
30
39
39
48
57
66
75
84
93
102
1
10
19
28
37
46
55
64
73
82
91
100
109
8
17
26
35
44
71
80
89
98
107
6
15
24
33
42
51
60
69
78
87
96
105
4
13
22
31
40
49
94
103
2
11
20
29
38
47
56
65
74
83
92
101
0
9
18
27
36
45
16
25
34
43
52
61
70
79
88
97
106
5
14
23
32
41
50
39
48
57
66
75
84
93
102
1
10
19
28
37
46
71
80
89
98
107
6
15
24
33
42
51
94
103
2
11
20
29
38
47
16
25
34
43
52
39
48