Sensipent family

From Xenharmonic Wiki
(Redirected from Subpental)
Jump to navigation Jump to search

Temperaments of the sensipent family temper out the sensipent comma, 78732/78125, also known as medium semicomma. The head of this family is sensipent i.e. the 5-limit version of sensi, generated by the naiadic interval of tempered 162/125. Two generators make 5/3, seven make harmonic 6 and nine make harmonic 10. Its ploidacot is beta-heptacot (pergen (P8, ccP5/7)) and its color name is Sepguti.

The second comma of the comma list determines which 7-limit family member we are looking at. Sensi adds 126/125. Sensei adds 225/224. Warrior adds 5120/5103. These are all strong extensions that use the same period and generator as sensipent.

Bison adds 6144/6125 with a semioctave period. Subpental adds 3136/3125 or 19683/19600 with a generator of ~56/45; two generator steps make the original. Trisensory adds 1728/1715 with a 1/3-octave period. Heinz adds 1029/1024 with a generator of ~48/35; three make the original. Catafourth adds 2401/2400 with a generator of ~250/189; four make the original. Finally, browser adds 16875/16807 with a generator of ~49/45; five make the original.

Temperaments discussed elsewhere include:

Considered below are sensi, sensei, warrior, bison, subpental, trisensory and heinz.

Sensipent

Subgroup: 2.3.5

Comma list: 78732/78125

Mapping[1 -1 -1], 0 7 9]]

mapping generators: ~2, ~162/125

Optimal tuning (POTE): ~2 = 1200.000, ~162/125 = 443.058

Optimal ET sequence8, 19, 46, 65, 539, 604c, 669c, 734c, 799c, 864c, 929c

Badness:

  • Smith: 0.035220
  • Dirichlet: 0.826

2.3.5.31 subgroup

Fascinatingly, essentially the only simple and accurate extension that preserves the occurrence of sensipent's tempered 5-limit structure in such large edos as 539 is the one with prime 31 by interpreting the generator accurately as 31/24~40/31, tempering out S31 = 961/960, so that the 31-limit quarter-tones 32/31 and 31/30 are equated, as sensipent splits 16/15 into two equal parts. For a less sparse subgroup present in smaller edo tunings like 111edo at the cost of slight accuracy, see the extension to the 2.3.5.11.17.31 subgroup #Sensible.

Subgroup: 2.3.5.31

Comma list: 961/960, 2511/2500

Mapping[1 -1 -1 2], 0 7 9 8]]

mapping generators: ~2, ~31/24

Optimal ET sequence8, 11c, 19, 46, 65, 344, 409, 474, 539, 604c

Optimal tuning (CTE): ~2 = 1200.000, ~31/24 = 443.050

Badness (Dirichlet): 0.243

Sendai

Sendai is an accurate extension of (2.3.5.31) sensipent with primes 23 and 29 found by VIxen. It is named after the body of acquis designed to prevent disaster risk and improve civil protection through international cooperation and after the city in Japan of the same name where it was signed (and where an international music competition is held).

Subgroup: 2.3.5.23.29.31

Comma list: 465/464, 576/575, 621/620, 900/899

Mapping[1 -1 -1 6 -4 2], 0 7 9 -4 24 8]]

Optimal ET sequence19, 46j, 65, 149, 363j

Optimal tuning (CTE): ~2 = 1200.000, ~31/24 = 442.989

Badness (Dirichlet): 0.283

Sensible

Sensible is an extension of sensipent with prime 11 of dubious canonicity but significantly higher accuracy than sensi. It interprets the generator as 165/128~128/99 by tempering out 8019/8000 so that 11/8 is reached as (10/9)3. This extension is very strong as supported by the optimal ET sequence going very far and as supported by another observation that it also tempers out the semiporwellisma, which is equal to S31 × S322 (thus forming the S-expression-based comma list). The vanish of the semiporwellisma, a lopsided comma, implies that this temperament equates (33/32)2 with 16/15 as well as that a natural extension to prime 31 exists through {S31, S32}, which we will see is very accurate, but this itself suggests that an extension with prime 17 is reasonably accurate through tempering out S33 so that a slightly sharp ~22/17 is equated with the generator.

The aforementioned extension with prime 17 through tempering out S33 is equivalent to the one by tempering out S16 = 256/255 = (22/17)/(165/128).

Sensible uses the accurate mapping of prime 31 in sensipent, so that the sensible generator serves many roles in subgroup harmony, but it is not ~9/7 or ~13/10 which would incur more damage. Its S-expression-based comma list is {(S16, S9/S10,) S23, S24, S31, S32, S33} implying also tempering out 496/495 = S31 × S32 and 528/527 = S32 × S33 as well as 16337/16335 = S31/S33 = (34/30)/(33/31)2 = (17/15)/(33/31)2. A notable patent val tuning not appearing in the optimal ET sequence is 157edo.

Subgroup: 2.3.5.11

Comma list: 8019/8000, 16384/16335

Mapping[1 -1 -1 9], 0 7 9 -15]]

mapping generators: ~2, ~128/99

Optimal ET sequence19, 46, 65, 176, 241, 306

Optimal tuning (CTE): ~2 = 1200.000, ~128/99 = 443.115

Badness (Dirichlet): 0.728

2.3.5.11.17 subgroup

Subgroup: 2.3.5.11.17

Comma list: 256/255, 1089/1088, 1377/1375

Mapping[1 -1 -1 9 10], 0 7 9 -15 -16]]

mapping generators: ~2, ~22/17

Optimal ET sequence19, 46, 65, 111, 176g

Optimal tuning (CTE): ~2 = 1200.000, ~22/17 = 443.188

Badness (Dirichlet): 0.639

2.3.5.11.17.23 subgroup

Subgroup: 2.3.5.11.17.23

Comma list: 256/255, 576/575, 1089/1088, 1377/1375

Mapping[1 -1 -1 9 10 6], 0 7 9 -15 -16 -4]]

Optimal ET sequence19, 46, 65, 111, 176g

Optimal tuning (CTE): ~2 = 1200.000, ~22/17 = 443.185

Badness (Dirichlet): 0.555

2.3.5.11.17.23.31 subgroup

Subgroup: 2.3.5.11.17.23.31

Comma list: 256/255, 576/575, 961/960, 1089/1088, 1377/1375

Mapping[1 -1 -1 9 10 6 2], 0 7 9 -15 -16 -4 8]]

Optimal ET sequence19, 46, 65, 111, 176g

Optimal tunings:

  • CTE: 2/1 = 1\1, ~22/17 = 443.183
  • CEE: 2/1 = 1\1, ~22/17 = 443.115

Badness (Dirichlet): 0.490

Sensi

Sensi tempers out 245/243, 686/675 and 4375/4374 in addition to 126/125, and can be described as the 19 & 27 temperament. It has as a generator half the size of a slightly wide major sixth, which gives an interval sharp of 9/7 and flat of 13/10, both of which can be used to identify it, as 2.3.5.7.13 sensi (sensation) tempers out 91/90. 22/17, in the middle, is even closer to the generator. 46edo is an excellent sensi tuning, and mos scales of size 8, 11, 19 and 27 are available.

Septimal sensi

Subgroup: 2.3.5.7

Comma list: 126/125, 245/243

Mapping[1-1 -1 -2], 0 7 9 13]]

mapping generators: ~2, ~9/7

Wedgie⟨⟨ 7 9 13 -2 1 5 ]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~9/7 = 443.3166
  • POTE: ~2 = 1200.000, ~9/7 = 443.383

Minimax tuning:

eigenmonzo (unchanged-interval) basis: 2.7
eigenmonzo (unchanged-interval) basis: 2.9/5

Tuning ranges:

  • 7-odd-limit diamond monotone: ~9/7 = [442.105, 450.000] (7\19 to 3\8)
  • 9-odd-limit diamond monotone: ~9/7 = [442.105, 444.444] (7\19 to 10\27)
  • 7-odd-limit diamond tradeoff: ~9/7 = [442.179, 445.628]
  • 9-odd-limit diamond tradeoff: ~9/7 = [435.084, 445.628]

Algebraic generator: The real root of x5 + x4 - 4x2 + x - 1, at 443.3783 cents.

Optimal ET sequence19, 27, 46

Badness: 0.025622

2.3.5.7.13 subgroup (sensation)

Subgroup: 2.3.5.7.13

Comma list: 91/90, 126/125, 169/168

Mapping: [1 -1 -1 -2 0], 0 7 9 13 10]]

mapping generators: ~2, ~9/7

Optimal tuning (CTE): ~2 = 1200.000, ~9/7 = 443.4016

Optimal ET sequence19, 27, 46, 111df

Sensor

Subgroup: 2.3.5.7.11

Comma list: 126/125, 245/243, 385/384

Mapping: [1 -1 -1 -2 9], 0 7 9 13 -15]]

mapping generators: ~2, ~9/7

Wedgie⟨⟨ 7 9 13 -15 -2 1 -48 5 -66 -87 ]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~9/7 = 443.2987
  • POTE: ~2 = 1200.000, ~9/7 = 443.294

Optimal ET sequence19, 27, 46, 111d

Badness: 0.037942

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 91/90, 126/125, 169/168, 385/384

Mapping: [1 -1 -1 -2 9 0], 0 7 9 13 -15 10]]

Wedgie⟨⟨ 7 9 13 -15 10 -2 1 -48 -10 5 -66 -10 -87 -20 90 ]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~9/7 = 443.3658
  • POTE: ~2 = 1200.000, ~9/7 = 443.321

Optimal ET sequence19, 27, 46, 111df

Badness: 0.025575

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 91/90, 126/125, 154/153, 169/168, 256/255

Mapping: [1 -1 -1 -2 9 0 10], 0 7 9 13 -15 10 -16]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~9/7 = 443.3775
  • POTE: ~2 = 1200.000, ~9/7 = 443.365

Optimal ET sequence19, 27, 46

Badness: 0.022908

Sensus

Subgroup: 2.3.5.7.11

Comma list: 126/125, 176/175, 245/243

Mapping: [1 -1 -1 -2 -8], 0 7 9 13 31]]

mapping generators: ~2, ~9/7

Wedgie⟨⟨ 7 9 13 31 -2 1 25 5 41 42 ]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~9/7 = 443.4783
  • POTE: ~2 = 1200.000, ~9/7 = 443.626

Optimal ET sequence19e, 27e, 46, 119c

Badness: 0.029486

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 91/90, 126/125, 169/168, 352/351

Mapping: [1 -1 -1 -2 -8 0], 0 7 9 13 31 10]]

Wedgie⟨⟨ 7 9 13 31 10 -2 1 25 -10 5 41 -10 42 -20 -80 ]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~9/7 = 443.5075
  • POTE: ~2 = 1200.000, ~9/7 = 443.559

Optimal ET sequence19e, 27e, 46

Badness: 0.020789

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 91/90, 126/125, 136/135, 154/153, 169/168

Mapping: [1 -1 -1 -2 -8 0 -7], 0 7 9 13 31 10 30]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~9/7 = 443.5050
  • POTE: ~2 = 1200.000, ~9/7 = 443.551

Optimal ET sequence19eg, 27eg, 46

Badness: 0.016238

Sensis

Subgroup: 2.3.5.7.11

Comma list: 56/55, 100/99, 245/243

Mapping: [1 -1 -1 -2 2], 0 7 9 13 4]]

mapping generators: ~2, ~9/7

Wedgie⟨⟨ 7 9 13 4 -2 1 -18 5 -22 -34 ]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~9/7 = 443.1886
  • POTE: ~2 = 1200.000, ~9/7 = 443.962

Optimal ET sequence8d, 19, 27e

Badness: 0.028680

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 56/55, 78/77, 91/90, 100/99

Mapping: [1 -1 -1 -2 2 0], 0 7 9 13 4 10]]

Wedgie⟨⟨ 7 9 13 4 10 -2 1 -18 -10 5 -22 -10 -34 -20 20 ]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~9/7 = 443.2863
  • POTE: ~2 = 1200.000, ~9/7 = 443.945

Optimal ET sequence8d, 19, 27e

Badness: 0.020017

Sensa

Subgroup: 2.3.5.7.11

Comma list: 55/54, 77/75, 99/98

Mapping: [1 -1 -1 -2 -1], 0 7 9 13 12]]

mapping generators: ~2, ~9/7

Optimal tunings:

  • CTE: ~2 = 1200.000, ~9/7 = 443.7814
  • POTE: ~2 = 1200.000, ~9/7 = 443.518

Optimal ET sequence8d, 19e, 27

Badness: 0.036835

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 55/54, 66/65, 77/75, 143/140

Mapping: [1 -1 -1 -2 -1 0], 0 7 9 13 12 11]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~9/7 = 443.7877
  • POTE: ~2 = 1200.000, ~9/7 = 443.506

Optimal ET sequence8d, 19e, 27

Badness: 0.023258

Bisensi

Bisensi has a 1/2-octave period. Its ploidacot is diploid delta-heptacot (pergen (P8/2, ccP5/7)).

Subgroup: 2.3.5.7.11

Comma list: 121/120, 126/125, 245/243

Mapping:

  • common form: [2 -2 -2 -4 1], 0 7 9 13 8]]
mapping generators: ~99/70, ~9/7
  • mingen form: [2 5 7 9 9], 0 -7 -9 -13 -8]]
mapping generators: ~99/70, ~11/10

Optimal tunings:

  • CTE: ~99/70 = 600.000, ~9/7 = 443.3688 (~11/10 = 156.6312)
  • POTE: ~99/70 = 600.000, ~9/7 = 443.308 (~11/10 = 156.692)

Optimal ET sequence8d, …, 38d, 46

Badness: 0.041723

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 91/90, 121/120, 126/125, 169/168

Mapping:

  • common form: [2 -2 -2 -4 1 0], 0 7 9 13 8 10]]
mapping generators: ~99/70, ~9/7
  • mingen form: [2 5 7 9 9 10], 0 -7 -9 -13 -8 -10]]
mapping generators: ~99/70, ~11/10

Optimal tunings:

  • CTE: ~55/39 = 600.000, ~9/7 = 443.4416, ~11/10 = 156.5584
  • POTE: ~55/39 = 600.000, ~9/7 = 443.275, ~11/10 = 156.725

Optimal ET sequence8d, …, 38df, 46

Badness: 0.026339

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 91/90, 121/120, 126/125, 154/153, 169/168

Mapping:

  • common form: [2 -2 -2 -4 1 0 3], 0 7 9 13 8 10 7]]
mapping generators: ~99/70, ~9/7
  • mingen form: [2 5 7 9 9 10 10], 0 -7 -9 -13 -8 -10 -7]]
mapping generators: ~99/70, ~11/10

Optimal tunings:

  • CTE: ~17/12 = 600.000, ~9/7 = 443.4466 (~11/10 = 156.5534)

Optimal ET sequence8d, …, 38df, 46

Badness: 0.0188

Hemisensi

Hemisensi splits the ~9/7 generator in two, each for ~25/22. Its ploidacot is beta-tetradecacot (pergen (P8, ccP5/14)).

Subgroup: 2.3.5.7.11

Comma list: 126/125, 243/242, 245/242

Mapping: [1 -1 -1 -2 -3], 0 14 18 26 35]]

mapping generators: ~2, ~25/22

Optimal tunings:

  • CTE: ~2 = 1200.000, ~25/22 = 221.5981
  • POTE: ~2 = 1200.000, ~25/22 = 221.605

Optimal ET sequence27e, 38d, 65

Badness: 0.048714

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 91/90, 126/125, 169/168, 243/242

Mapping: [1 -1 -1 -2 -3 0], 0 14 18 26 35 20]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~25/22 = 221.6333
  • POTE: ~2 = 1200.000, ~25/22 = 221.556

Optimal ET sequence27e, 38df, 65f

Badness: 0.033016

Sensei

Subgroup: 2.3.5.7

Comma list: 225/224, 78732/78125

Mapping[1 -1 -1 -9], 0 7 9 32]]

mapping generators: ~2, ~162/125

Wedgie⟨⟨ 7 9 32 -2 31 49 ]]

Optimal tuning (POTE): ~2 = 1200.000, ~162/125 = 442.755

Optimal ET sequence19, 65d, 84, 103, 187, 290b

Badness: 0.059218

Warrior

Subgroup: 2.3.5.7

Comma list: 5120/5103, 78732/78125

Mapping[1 -1 -1 15], 0 7 9 -33]]

mapping generators: ~2, ~162/125

Wedgie⟨⟨ 7 9 -33 -2 -72 -102 ]]

Optimal tuning (POTE): ~2 = 1200.000, ~162/125 = 443.289

Optimal ET sequence46, 111, 157, 268cd

Badness: 0.118239

11-limit

Subgroup: 2.3.5.7.11

Comma list: 176/175, 1331/1323, 5120/5103

Mapping: [1 -1 -1 15 9], 0 7 9 -33 -15]]

mapping generators: ~2, ~128/99

Optimal tuning (POTE): ~2 = 1200.000, ~128/99 = 443.274

Optimal ET sequence46, 65d, 111, 268cd, 379cdd

Badness: 0.046383

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 176/175, 351/350, 847/845, 1331/1323

Mapping: [1 -1 -1 15 9 17], 0 7 9 -33 -15 -36]]

mapping generators: ~2, ~84/65

Optimal tuning (POTE): ~2 = 1200.000, ~84/65 = 443.270

Optimal ET sequence46, 65d, 111, 268cd, 379cddf

Badness: 0.028735

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 176/175, 256/255, 351/350, 442/441, 715/714

Mapping: [1 -1 -1 15 9 17 10], 0 7 9 -33 -15 -36 -16]]

mapping generators: ~2, ~22/17

Optimal tuning (POTE): ~2 = 1200.000, ~22/17 = 443.270

Optimal ET sequence46, 65d, 111, 268cdg, 379cddfg

Badness: 0.018105

Bison

Bison has a 1/2-octave period. Its ploidacot is diploid delta-heptacot (pergen (P8/2, ccP5/7)). Related page: Bison/Eliora's Approach.

Subgroup: 2.3.5.7

Comma list: 6144/6125, 78732/78125

Mapping:

  • common form: [2 -2 -2 13], 0 7 9 -10]]
mapping generators: ~567/400, ~162/125
  • mingen form: [2 5 7 3], 0 -7 -9 10]]
mapping generators: ~567/400, ~35/32

Wedgie⟨⟨ 14 18 -20 -4 -71 -97 ]]

Optimal tuning (POTE): ~567/400 = 600.000, ~162/125 = 443.075 (~35/32 = 156.925)

Optimal ET sequence8, 38, 46, 84, 130

Badness: 0.070375

11-limit

Subgroup: 2.3.5.7.11

Comma list: 441/440, 6144/6125, 8019/8000

Mapping:

  • common form: [2 -2 -2 13 18], 0 7 9 -10 -15]]
mapping generators: ~567/400, ~162/125
  • mingen form: [2 5 7 3 3], 0 -7 -9 10 15]]
mapping generators: ~567/400, ~35/32

Optimal tuning (POTE): ~99/70 = 600.000, ~162/125 = 443.117 (~35/32 = 156.883)

Optimal ET sequence46, 84, 130, 306, 436ce

Badness: 0.037132

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 351/350, 364/363, 441/440, 10985/10976

Mapping:

  • common form: [2 -2 -2 13 18 17], 0 7 9 -10 -15 -13]]
mapping generators: ~55/39, ~162/125
  • mingen form: [2 5 7 3 3 4], 0 -7 -9 10 15 13]]
mapping generators: ~55/39, ~35/32

Optimal tuning (POTE): ~55/39 = 600.000, ~162/125 = 443.096 (~35/32 = 156.904)

Optimal ET sequence46, 84, 130, 566ce, 596cef

Badness: 0.023504

Subpental

Subpental splits the generator ~14/9 in two. Its ploidacot is theta-tetradecacot (pergen (P8, c4P4/14)).

Subgroup: 2.3.5.7

Comma list: 3136/3125, 19683/19600

Mapping[1 6 8 17], 0 -14 -18 -45]]

mapping generators: ~2, ~56/45

Wedgie⟨⟨ 14 18 45 -4 32 54 ]]

Optimal tuning (POTE): ~2 = 1200.000, ~56/45 = 378.467

Optimal ET sequence19, 111, 130, 929c, 1059c, 1189bc, 1319bc

Badness: 0.054303

11-limit

Subgroup: 2.3.5.7.11

Comma list: 540/539, 3136/3125, 8019/8000

Mapping: [1 6 8 17 -6], 0 -14 -18 -45 30]]

Optimal tuning (POTE): ~2 = 1200.000, ~56/45 = 378.440

Optimal ET sequence19, 111, 130, 241, 371ce, 501cde, 872cde

Badness: 0.045352

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 351/350, 540/539, 676/675, 3136/3125

Mapping: [1 6 8 17 -6 16], 0 -14 -18 -45 30 -39]]

Optimal tuning (POTE): ~2 = 1200.000, ~56/45 = 378.437

Optimal ET sequence19, 111, 130, 241, 371ce

Badness: 0.023940

Heinz

Heinz splits the generator ~18/7 in three. Its ploidacot is theta-21-cot (pergen (P8, c9P5/21)). A notable tuning of heinz not shown below for those who like 19edo's representation of the 5-limit is 57edo (57 = 103 - 46).

Subgroup: 2.3.5.7

Comma list: 1029/1024, 78732/78125

Mapping[1 -8 -10 6], 0 21 27 -7]]

mapping generators: ~2, ~48/35

Wedgie⟨⟨ 21 27 -7 -6 -70 -92 ]]

Optimal tuning (POTE): ~2 = 1200.000, ~48/35 = 546.815

Optimal ET sequence46, 103, 149, 699bdd

Badness: 0.115385

11-limit

Subgroup: 2.3.5.7.11

Comma list: 385/384, 441/440, 78732/78125

Mapping[1 -8 -10 6 3], 0 21 27 -7 1]]

mapping generators: ~2, ~11/8

Optimal tuning (POTE): ~2 = 1200.000, ~11/8 = 547.631

Optimal ET sequence46, 103, 149, 252e, 401bdee

Badness: 0.042412

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 351/350, 385/384, 441/440, 847/845

Mapping[1 -8 -10 6 3 11], 0 21 27 -7 1 -16]]

Optimal tuning (POTE): ~2 = 1200.000, ~11/8 = 547.629

Optimal ET sequence46, 103, 149, 252ef, 401bdeef

Badness: 0.025779

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 273/272, 351/350, 385/384, 441/440, 847/845

Mapping[1 -8 -10 6 3 11 5], 0 21 27 -7 1 -16 -2]]

Optimal tuning (POTE): ~2 = 1200.000, ~11/8 = 547.635

Optimal ET sequence46, 103, 149, 252ef, 401bdeef

Badness: 0.018479

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 171/170, 209/208, 351/350, 385/384, 441/440, 969/968

Mapping[1 -8 -10 6 3 11 5 12], 0 21 27 -7 1 -16 -2 -17]]

Optimal tuning (POTE): ~2 = 1200.000, ~11/8 = 547.614

Optimal ET sequence46, 103h, 149h, 252efhh

Badness: 0.019005

Trisensory

Trisensory has 1/3-octave period. Its ploidacot is triploid digamma-heptacot (pergen (P8/3, M6/21)).

Subgroup: 2.3.5.7

Comma list: 1728/1715, 78732/78125

Mapping[3 4 6 8], 0 7 9 4]]

mapping generators: ~63/50, ~36/35

Wedgie⟨⟨ 21 27 12 -6 -40 -48 ]]

Optimal tuning (POTE): ~63/50 = 400.000, ~36/35 = 43.147

Optimal ET sequence27, 57, 84, 111, 195d, 306d

Badness: 0.089740

11-limit

Subgroup: 2.3.5.7.11

Comma list: 176/175, 540/539, 78732/78125

Mapping: [3 4 6 8 8], 0 7 9 4 22]]

Optimal tuning (POTE): ~63/50 = 400.000, ~36/35 = 43.292

Optimal ET sequence27e, 84e, 111

Badness: 0.058413

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 176/175, 351/350, 540/539, 9295/9261

Mapping: [3 4 6 8 8 11], 0 7 9 4 22 1]]

mapping generators: ~49/39, ~36/35

Optimal tuning (POTE): ~49/39 = 400.000, ~36/35 = 43.288

Optimal ET sequence27e, 84e, 111

Badness: 0.034829

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 176/175, 351/350, 442/441, 540/539, 715/714

Mapping: [3 4 6 8 8 11 10], 0 7 9 4 22 1 21]]

Optimal tuning (POTE): ~49/39 = 400.000, ~36/35 = 43.276

Optimal ET sequence27eg, 84e, 111

Badness: 0.024120

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 176/175, 286/285, 324/323, 351/350, 400/399, 476/475

Mapping: [3 4 6 8 8 11 10 12], 0 7 9 4 22 1 21 7]]

Optimal tuning (POTE): ~49/39 = 400.000, ~36/35 = 43.292

Optimal ET sequence27eg, 84e, 111

Badness: 0.018466