268edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 267edo268edo269edo →
Prime factorization 22 × 67
Step size 4.47761¢
Fifth 157\268 (702.985¢)
Semitones (A1:m2) 27:19 (120.9¢ : 85.07¢)
Consistency limit 3
Distinct consistency limit 3

268 equal divisions of the octave (268edo), or 268-tone equal temperament (268tet), 268 equal temperament (268et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 268 equal parts of about 4.48 ¢ each.

Theory

Approximation of prime intervals in 268 EDO
Prime number 2 3 5 7 11 13 17 19
Error absolute (¢) +0.00 +1.03 -1.24 -1.66 -0.57 +1.26 -1.97 -1.99
relative (%) +0 +23 -28 -37 -13 +28 -44 -44
Steps (reduced) 268 (0) 425 (157) 622 (86) 752 (216) 927 (123) 992 (188) 1095 (23) 1138 (66)