# 379edo

 ← 378edo 379edo 380edo →
Prime factorization 379 (prime)
Step size 3.16623¢
Fifth 222\379 (702.902¢)
Semitones (A1:m2) 38:27 (120.3¢ : 85.49¢)
Consistency limit 7
Distinct consistency limit 7

379 equal divisions of the octave (abbreviated 379edo or 379ed2), also called 379-tone equal temperament (379tet) or 379 equal temperament (379et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 379 equal parts of about 3.17 ¢ each. Each step represents a frequency ratio of 21/379, or the 379th root of 2.

## Theory

Using the patent val, the equal temperament tempers out 2401/2400, 5120/5103, and 10976/10935 in the 7-limit; 5632/5625, 6250/6237, 14641/14580, 42875/42768, and 43923/43904 in the 11-limit. It supports hemififths and subneutral.

### Odd harmonics

Approximation of odd harmonics in 379edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error absolute (¢) +0.95 -0.03 +0.04 -1.27 -0.39 -1.48 +0.91 -0.47 +0.11 +0.99 -1.36
relative (%) +30 -1 +1 -40 -12 -47 +29 -15 +4 +31 -43
Steps
(reduced)
601
(222)
880
(122)
1064
(306)
1201
(64)
1311
(174)
1402
(265)
1481
(344)
1549
(33)
1610
(94)
1665
(149)
1714
(198)

### Subsets and supersets

379edo is the 75th prime edo.

## Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [601 -379 [379 601]] -0.2989 0.2988 9.43
2.3.5 [35 -25 2, [38 -2 -15 [379​ 601 ​880]] -0.1944 0.2852 9.01
2.3.5.7 5120/5103, 2401/2400, [-23 -11 15 2 [379​ 601​ 880​ 1064​]] -0.1493 0.2591 8.18
2.3.5.7.11 2401/2400, 5120/5103, 5632/5625, 14641/14580 [379 ​601 ​880​ 1064 ​1311 ​]] -0.0967 0.2545 8.04
2.3.5.7.11.13 325/324, 1001/1000, 1716/1715, 5120/5103, 6656/6655 [379 ​601 ​880​ 1064 ​1311​ 1402]] (379) -0.014 0.2969 9.38

### Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
Ratio*
Temperaments
1 61\379 193.14 262144/234375 Luna
1 110\379 348.28 57344/46875 Subneutral
1 111\379 351.45 49/40 Hemififths
1 143\379 452.77 162/125 Maja (5-limit)
1 221\379 699.74 8192/6137 Langwidge

Francium