379edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 378edo379edo380edo →
Prime factorization 379 (prime)
Step size 3.16623¢
Fifth 222\379 (702.902¢)
Semitones (A1:m2) 38:27 (120.3¢ : 85.49¢)
Consistency limit 7
Distinct consistency limit 7

379 equal divisions of the octave (379edo), or 379-tone equal temperament (379tet), 379 equal temperament (379et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 379 equal parts of about 3.17 ¢ each.

Theory

379 tempers out 4096000/4084101, 5120/5103 and 2401/2400 in the 7-limit; 2097152/2096325, 1953125/1951488, 6250/6237, 42875/42768, 5767168/5764801, 180224/180075, 5632/5625, 537109375/536870912, 422576/421875, 9453125/9437184, 166375/165888, 67110351/67108864, 3294225/3294172, 43923/43904, 102487/102400, 20614528/20588575, 644204/643125 and 781258401/781250000 in the 11-limit. It provides the optimal patent val for the subneutral temperament. 379edo is the 75th prime edo.

Approximation of odd harmonics in 379edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error absolute (¢) +0.95 -0.03 +0.04 -1.27 -0.39 -1.48 +0.91 -0.47 +0.11 +0.99 -1.36
relative (%) +30 -1 +1 -40 -12 -47 +29 -15 +4 +31 -43
Steps
(reduced)
601
(222)
880
(122)
1064
(306)
1201
(64)
1311
(174)
1402
(265)
1481
(344)
1549
(33)
1610
(94)
1665
(149)
1714
(198)

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [601 -379 379 601] -0.2989 0.2988 9.43
2.3.5 [35 -25 2, [38 -2 -15 379​ 601 ​880] -0.1944 0.2852 9.01
2.3.5.7 5120/5103, 2401/2400, [-23 -11 15 2 379​ 601​ 880​ 1064​] -0.1493 0.2591 8.18
2.3.5.7.11 5120/5103, 5632/5625, 2401/2400, 166375/165888 379 ​601 ​880​ 1064 ​1311​] -0.0967 0.2545 8.04
2.3.5.7.11.13 325/324, 1001/1000, 1716/1715, 5120/5103, 6656/6655 379 ​601 ​880​ 1064 ​1311​ 1402] -0.014 0.2969 9.38

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator
(reduced)
Cents
(reduced)
Associated
ratio
Temperaments
1 61\379 193.14 262144/234375 Luna
1 110\379 348.28 57344/46875 Subneutral
1 111\379 351.45 49/40 Hemififths
1 143\379 452.77 162/125 Maja
1 221\379 699.74 8192/6137 Langwidge

Scales

Music