379edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 378edo 379edo 380edo →
Prime factorization 379 (prime)
Step size 3.16623¢ 
Fifth 222\379 (702.902¢)
Semitones (A1:m2) 38:27 (120.3¢ : 85.49¢)
Consistency limit 7
Distinct consistency limit 7

379 equal divisions of the octave (abbreviated 379edo or 379ed2), also called 379-tone equal temperament (379tet) or 379 equal temperament (379et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 379 equal parts of about 3.17 ¢ each. Each step represents a frequency ratio of 21/379, or the 379th root of 2.

Theory

Using the patent val, the equal temperament tempers out 2401/2400, 5120/5103, and 10976/10935 in the 7-limit; 5632/5625, 6250/6237, 14641/14580, 42875/42768, and 43923/43904 in the 11-limit. It supports hemififths and subneutral.

Odd harmonics

Approximation of odd harmonics in 379edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) +0.95 -0.03 +0.04 -1.27 -0.39 -1.48 +0.91 -0.47 +0.11 +0.99 -1.36
Relative (%) +29.9 -1.1 +1.2 -40.2 -12.5 -46.7 +28.8 -14.8 +3.5 +31.2 -43.0
Steps
(reduced)
601
(222)
880
(122)
1064
(306)
1201
(64)
1311
(174)
1402
(265)
1481
(344)
1549
(33)
1610
(94)
1665
(149)
1714
(198)

Subsets and supersets

379edo is the 75th prime edo.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [601 -379 [379 601]] -0.2989 0.2988 9.43
2.3.5 [35 -25 2, [38 -2 -15 [379​ 601 ​880]] -0.1944 0.2852 9.01
2.3.5.7 5120/5103, 2401/2400, [-23 -11 15 2 [379​ 601​ 880​ 1064​]] -0.1493 0.2591 8.18
2.3.5.7.11 2401/2400, 5120/5103, 5632/5625, 14641/14580 [379 ​601 ​880​ 1064 ​1311 ​]] -0.0967 0.2545 8.04
2.3.5.7.11.13 325/324, 1001/1000, 1716/1715, 5120/5103, 6656/6655 [379 ​601 ​880​ 1064 ​1311​ 1402]] (379) -0.014 0.2969 9.38

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
Ratio*
Temperaments
1 61\379 193.14 262144/234375 Luna
1 110\379 348.28 57344/46875 Subneutral
1 111\379 351.45 49/40 Hemififths
1 143\379 452.77 162/125 Maja (5-limit)
1 221\379 699.74 8192/6137 Langwidge

Scales

Music

Francium