57edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 56edo 57edo 58edo →
Prime factorization 3 × 19
Step size 21.0526¢ 
Fifth 33\57 (694.737¢) (→11\19)
Semitones (A1:m2) 3:6 (63.16¢ : 126.3¢)
Dual sharp fifth 34\57 (715.789¢)
Dual flat fifth 33\57 (694.737¢) (→11\19)
Dual major 2nd 10\57 (210.526¢)
Consistency limit 7
Distinct consistency limit 7

57 equal divisions of the octave (abbreviated 57edo or 57ed2), also called 57-tone equal temperament (57tet) or 57 equal temperament (57et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 57 equal parts of about 21.1 ¢ each. Each step represents a frequency ratio of 21/57, or the 57th root of 2.

Theory

57edo is an excellent tuning for the 2.5/3.7.11.13.17.19 just intonation subgroup. One way to describe 57edo is that it has a 5-limit part consisting of three rings of 19edo, plus a no-threes no-fives part which is much more accurate.

Using the full prime-limit patent val, the equal temperament tempers out 81/80, 1029/1024, and 3125/3072 in the 7-limit; and 99/98, 385/384, 441/440, and 625/616 in the 11-limit. A good generator to exploit the 2.5/3.7.11.13.17.19 aspect of 57 is the approximate 11/8, which is 26\57. This gives the 19-limit 46 & 57 temperament heinz. It can also be used to tune mothra as well as trismegistus.

Odd harmonics

Approximation of odd harmonics in 57edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -7.22 -7.37 -0.40 +6.62 -3.95 +1.58 +6.47 +0.31 -2.78 -7.62 +3.30
Relative (%) -34.3 -35.0 -1.9 +31.4 -18.8 +7.5 +30.7 +1.5 -13.2 -36.2 +15.7
Steps
(reduced)
90
(33)
132
(18)
160
(46)
181
(10)
197
(26)
211
(40)
223
(52)
233
(5)
242
(14)
250
(22)
258
(30)

Subsets and supersets

57edo contains 3edo and 19edo as subsets.

Intervals

# Cents Ups and Downs Notation
(Flat Fifth 11\19)
Ups and Downs Notation
(Sharp Fifth 34\57)
0 0.00 D D
1 21.05 ^D, vvE♭♭ ^D, E♭
2 42.11 ^^D, vE♭♭ ^^D, v9E
3 63.16 D♯, E♭♭ ^3D, v8E
4 84.21 ^D♯, vvE♭ ^4D, v7E
5 105.26 ^^D♯, vE♭ ^5D, v6E
6 126.32 D𝄪, E♭ ^6D, v5E
7 147.37 ^D𝄪, vvE ^7D, v4E
8 168.42 ^^D𝄪, vE ^8D, v3E
9 189.47 E ^9D, vvE
10 210.53 ^E, vvF♭ D♯, vE
11 231.58 ^^E, vF♭ E
12 252.63 E♯, F♭ F
13 273.68 ^E♯, vvF ^F, G♭
14 294.74 ^^E♯, vF ^^F, v9G
15 315.79 F ^3F, v8G
16 336.84 ^F, vvG♭♭ ^4F, v7G
17 357.89 ^^F, vG♭♭ ^5F, v6G
18 378.95 F♯, G♭♭ ^6F, v5G
19 400.00 ^F♯, vvG♭ ^7F, v4G
20 421.05 ^^F♯, vG♭ ^8F, v3G
21 442.11 F𝄪, G♭ ^9F, vvG
22 463.16 ^F𝄪, vvG F♯, vG
23 484.21 ^^F𝄪, vG G
24 505.26 G ^G, A♭
25 526.32 ^G, vvA♭♭ ^^G, v9A
26 547.37 ^^G, vA♭♭ ^3G, v8A
27 568.42 G♯, A♭♭ ^4G, v7A
28 589.47 ^G♯, vvA♭ ^5G, v6A
29 610.53 ^^G♯, vA♭ ^6G, v5A
30 631.58 G𝄪, A♭ ^7G, v4A
31 652.63 ^G𝄪, vvA ^8G, v3A
32 673.68 ^^G𝄪, vA ^9G, vvA
33 694.74 A G♯, vA
34 715.79 ^A, vvB♭♭ A
35 736.84 ^^A, vB♭♭ ^A, B♭
36 757.89 A♯, B♭♭ ^^A, v9B
37 778.95 ^A♯, vvB♭ ^3A, v8B
38 800.00 ^^A♯, vB♭ ^4A, v7B
39 821.05 A𝄪, B♭ ^5A, v6B
40 842.11 ^A𝄪, vvB ^6A, v5B
41 863.16 ^^A𝄪, vB ^7A, v4B
42 884.21 B ^8A, v3B
43 905.26 ^B, vvC♭ ^9A, vvB
44 926.32 ^^B, vC♭ A♯, vB
45 947.37 B♯, C♭ B
46 968.42 ^B♯, vvC C
47 989.47 ^^B♯, vC ^C, D♭
48 1010.53 C ^^C, v9D
49 1031.58 ^C, vvD♭♭ ^3C, v8D
50 1052.63 ^^C, vD♭♭ ^4C, v7D
51 1073.68 C♯, D♭♭ ^5C, v6D
52 1094.74 ^C♯, vvD♭ ^6C, v5D
53 1115.79 ^^C♯, vD♭ ^7C, v4D
54 1136.84 C𝄪, D♭ ^8C, v3D
55 1157.89 ^C𝄪, vvD ^9C, vvD
56 1178.95 ^^C𝄪, vD C♯, vD
57 1200.00 D D

Scales

  • 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 1 - 3mos of type 18L 21s (augene)