56edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 55edo 56edo 57edo →
Prime factorization 23 × 7
Step size 21.4286¢ 
Fifth 33\56 (707.143¢)
Semitones (A1:m2) 7:3 (150¢ : 64.29¢)
Consistency limit 7
Distinct consistency limit 7

56 equal divisions of the octave (abbreviated 56edo or 56ed2), also called 56-tone equal temperament (56tet) or 56 equal temperament (56et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 56 equal parts of about 21.4 ¢ each. Each step represents a frequency ratio of 21/56, or the 56th root of 2.

Theory

56edo shares its near perfect quality of classical major third with 28edo, which it doubles, while also adding a superpythagorean 5th that is a convergent towards the bronze metallic mean, following 17edo and preceding 185edo. Because it contains 28edo's major third and also has a step size very close to the syntonic comma, 56edo contains very accurate approximations of both the classic major third 5/4 and the Pythagorean major third 81/64. Unfortunately, this "Pythagorean major third" is not the major third as is stacked by fifths in 56edo.

56edo can be used to tune hemithirds, superkleismic, sycamore and keen temperaments, and using 56 89 130 158] (56d) as the equal temperament val, for pajara. It provides the optimal patent val for 7-, 11- and 13-limit sycamore, and the 11-limit 56d val is close to the POTE tuning for 11-limit pajara.

Prime harmonics

Approximation of prime harmonics in 56edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 +5.19 -0.60 -4.54 +5.82 -4.81 +2.19 +2.49 -6.85 -1.01 -9.32
Relative (%) +0.0 +24.2 -2.8 -21.2 +27.2 -22.5 +10.2 +11.6 -31.9 -4.7 -43.5
Steps
(reduced)
56
(0)
89
(33)
130
(18)
157
(45)
194
(26)
207
(39)
229
(5)
238
(14)
253
(29)
272
(48)
277
(53)

Subsets and supersets

Since 56 factors into 23 × 7, 56edo has subset edos 2, 4, 7, 8, 14, 28.

One step of 56edo is the closest direct approximation to the syntonic comma, 81/80, with the unrounded value being 55.7976. Barium temperament realizes this proximity through regular temperament theory, and is supported by notable edos like 224edo, 1848edo, and 2520edo, which is a highly composite edo.

Intervals

# Cents Approximate ratios* Ups and downs notation
0 0.000 1/1 D
1 21.429 49/48, 64/63 ^D, vvE♭
2 42.857 28/27, 50/49, 81/80 ^^D, vE♭
3 64.286 25/24, 36/35, 33/32 ^3D, E♭
4 85.714 21/20, 22/21 v3D♯, ^E♭
5 107.143 16/15 vvD♯, ^^E♭
6 128.571 15/14, 13/12, 14/13 vD♯, ^3E♭
7 150.000 12/11 D♯, v3E
8 171.429 10/9, 11/10 ^D♯, vvE
9 192.857 28/25 ^^D♯, vE
10 214.286 9/8 E
11 235.714 8/7 ^E, vvF
12 257.143 7/6, 15/13 ^^E, vF
13 278.571 75/64, 13/11 F
14 300.000 25/21 ^F, vvG♭
15 321.429 6/5 ^^F, vG♭
16 342.857 11/9, 39/32 ^3F, G♭
17 364.286 27/22, 16/13, 26/21 v3F♯, ^G♭
18 385.714 5/4 vvF♯, ^^G♭
19 407.143 14/11 vF♯, ^3G♭
20 428.571 32/25, 33/26 F♯, v3G
21 450.000 9/7, 13/10 ^F♯, vvG
22 471.429 21/16 ^^F♯, vG
23 492.857 4/3 G
24 514.286 35/26 ^G, vvA♭
25 535.714 27/20, 15/11 ^^G, vA♭
26 557.143 11/8 ^3G, A♭
27 578.571 7/5 v3G♯, ^A♭
28 600.000 45/32, 64/45 vvG♯, ^^A♭

* The following table assumes the patent val 56 89 130 157 194 207]; other approaches are possible. Inconsistent intervals are marked in italics.

Notation

Sagittal notation

This notation uses the same sagittal sequence as 63-EDO.

Evo flavor

56-EDO Evo Sagittal.svgSagittal notationPeriodic table of EDOs with sagittal notation64/6381/8033/32

Revo flavor

56-EDO Revo Sagittal.svgSagittal notationPeriodic table of EDOs with sagittal notation64/6381/8033/32

Ups and downs notation

Using Helmholtz–Ellis accidentals, 56edo can also be notated using ups and downs notation:

Step Offset 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Sharp Symbol
Heji18.svg
Heji19.svg
Heji20.svg
Heji21.svg
Heji22.svg
Heji23.svg
Heji24.svg
Heji25.svg
Heji26.svg
Heji27.svg
Heji28.svg
Heji29.svg
Heji30.svg
Heji31.svg
Heji32.svg
Heji33.svg
Heji34.svg
Heji35.svg
Flat Symbol
Heji17.svg
Heji16.svg
Heji15.svg
Heji14.svg
Heji13.svg
Heji12.svg
Heji11.svg
Heji10.svg
Heji9.svg
Heji8.svg
Heji7.svg
Heji6.svg
Heji5.svg
Heji4.svg
Heji3.svg
Heji2.svg
Heji1.svg

Here, a sharp raises by seven steps, and a flat lowers by seven steps, so single, double, and triple arrows can be used to fill in the gap.

Approximation to JI

The following tables show how 15-odd-limit intervals are represented in 56edo. Prime harmonics are in bold; inconsistent intervals are in italics.

15-odd-limit intervals in 56edo (direct approximation, even if inconsistent)
Interval and complement Error (abs, ¢) Error (rel, %)
1/1, 2/1 0.000 0.0
13/7, 14/13 0.273 1.3
5/4, 8/5 0.599 2.8
11/6, 12/11 0.637 3.0
15/11, 22/15 1.236 5.8
7/5, 10/7 3.941 18.4
13/10, 20/13 4.214 19.7
7/4, 8/7 4.540 21.2
11/9, 18/11 4.551 21.2
15/8, 16/15 4.588 21.4
13/8, 16/13 4.813 22.5
3/2, 4/3 5.188 24.2
5/3, 6/5 5.787 27.0
11/8, 16/11 5.825 27.2
13/9, 18/13 6.239 29.1
11/10, 20/11 6.424 30.0
9/7, 14/9 6.513 30.4
15/14, 28/15 9.129 42.6
15/13, 26/15 9.402 43.9
7/6, 12/7 9.728 45.4
13/12, 24/13 10.001 46.7
11/7, 14/11 10.365 48.4
9/8, 16/9 10.376 48.4
9/5, 10/9 10.453 48.8
13/11, 22/13 10.638 49.6
15-odd-limit intervals in 56edo (patent val mapping)
Interval and complement Error (abs, ¢) Error (rel, %)
1/1, 2/1 0.000 0.0
13/7, 14/13 0.273 1.3
5/4, 8/5 0.599 2.8
11/6, 12/11 0.637 3.0
15/11, 22/15 1.236 5.8
7/5, 10/7 3.941 18.4
13/10, 20/13 4.214 19.7
7/4, 8/7 4.540 21.2
11/9, 18/11 4.551 21.2
15/8, 16/15 4.588 21.4
13/8, 16/13 4.813 22.5
3/2, 4/3 5.188 24.2
5/3, 6/5 5.787 27.0
11/8, 16/11 5.825 27.2
11/10, 20/11 6.424 30.0
15/14, 28/15 9.129 42.6
15/13, 26/15 9.402 43.9
7/6, 12/7 9.728 45.4
13/12, 24/13 10.001 46.7
11/7, 14/11 10.365 48.4
9/8, 16/9 10.376 48.4
13/11, 22/13 10.638 49.6
9/5, 10/9 10.975 51.2
9/7, 14/9 14.916 69.6
13/9, 18/13 15.189 70.9

Zeta peak index

Tuning Strength Closest edo Integer limit
ZPI Steps per octave Step size (cents) Height Integral Gap Edo Octave (cents) Consistent Distinct
276zpi 56.0083399588546 21.4253805929895 6.063216 0.931117 14.804703 56edo 1199.82131320741 8 8

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [89 -56 [56 89]] −1.64 1.63 7.64
2.3.5 2048/2025, 1953125/1889568 [56 89 130]] −1.01 1.61 7.50
2.3.5.7 686/675, 875/864, 1029/1024 [56 89 130 157]] −0.352 1.80 8.38
2.3.5.7.11 100/99, 245/242, 385/384, 686/675 [56 89 130 157 194]] −0.618 1.69 7.90
2.3.5.7.11.13 91/90, 100/99, 169/168, 245/242, 385/384 [56 89 130 157 194 207]] −0.299 1.70 7.95

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
ratio*
Temperament
1 3\56 64.29 25/24 Sycamore
1 9\56 192.86 28/25 Hemithirds
1 11\56 235.71 8/7 Slendric
1 15\56 321.43 6/5 Superkleismic
1 25\56 535.71 15/11 Maquila (56d) / maquiloid (56)
2 11\56 235.71 8/7 Echidnic
2 23\56
(5\56)
492.86
(107.14)
4/3
(17/16)
Keen / keenic
4 23\56
(5\56)
492.86
(107.14)
4/3
(17/16)
Bidia (7-limit)
7 23\56
(1\56)
492.86
(21.43)
4/3
(250/243)
Sevond

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct

Scales

Music

Claudi Meneghin

See also