119edo
← 118edo | 119edo | 120edo → |
119 equal divisions of the octave (abbreviated 119edo or 119ed2), also called 119-tone equal temperament (119tet) or 119 equal temperament (119et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 119 equal parts of about 10.1 ¢ each. Each step represents a frequency ratio of 21/119, or the 119th root of 2.
Theory
119edo is inconsistent in the 5-odd-limit, with both harmonics 3 and 5 falling halfway between steps. It does have potential as a 2.7.9.15 subgroup system. In higher limits, 2.7.15.29.37 is a strong interpretation.
Nonetheless, there is a number of mappings to be considered. In the 11-limit, 119edo's provides the optimal patent val for the 11-limit androboh and quasitemp temperaments. The patent val also tunes the 11-limit quadrawell temperament. 119c val tunes treecreeper, sensus, and senator as high as the 17-limit, while the 119b val is an extremely good approximation to 2/7-comma meantone in addition to supporting chlorine (by equating 25/24 very accurately to one step of 17edo).
Odd harmonics
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | 25 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.93 | -3.12 | -0.76 | -2.23 | +3.30 | -3.55 | +0.81 | -4.12 | +5.01 | +3.17 | -3.06 | +3.84 |
Relative (%) | +38.9 | -30.9 | -7.5 | -22.1 | +32.8 | -35.2 | +8.0 | -40.8 | +49.7 | +31.4 | -30.4 | +38.1 | |
Steps (reduced) |
189 (70) |
276 (38) |
334 (96) |
377 (20) |
412 (55) |
440 (83) |
465 (108) |
486 (10) |
506 (30) |
523 (47) |
538 (62) |
553 (77) |
Harmonic | 27 | 29 | 31 | 33 | 35 | 37 | 39 | 41 | 43 | 45 | 47 | 49 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.70 | -1.01 | +4.54 | -2.85 | -3.88 | +0.76 | +0.37 | +4.55 | +2.77 | +4.73 | +0.04 | -1.52 |
Relative (%) | +16.8 | -10.0 | +45.1 | -28.3 | -38.5 | +7.5 | +3.7 | +45.1 | +27.4 | +46.9 | +0.4 | -15.0 | |
Steps (reduced) |
566 (90) |
578 (102) |
590 (114) |
600 (5) |
610 (15) |
620 (25) |
629 (34) |
638 (43) |
646 (51) |
654 (59) |
661 (66) |
668 (73) |
Subsets and supersets
Since 119edo factors as 7 × 17, it contains 7edo and 17edo as a subset. Hence it supports circles of fifths of those respective equal temperaments.
Intervals
Steps | Cents | Approximate ratios | Ups and downs notation (Dual flat fifth 69\119) |
Ups and downs notation (Dual sharp fifth 70\119) |
---|---|---|---|---|
0 | 0 | 1/1 | D | D |
1 | 10.1 | ^D, ^3E♭♭♭ | ^D, v6E♭ | |
2 | 20.2 | ^^D, v3E♭♭ | ^^D, v5E♭ | |
3 | 30.3 | ^3D, vvE♭♭ | ^3D, v4E♭ | |
4 | 40.3 | 42/41, 43/42, 44/43, 45/44 | v3D♯, vE♭♭ | ^4D, v3E♭ |
5 | 50.4 | 35/34 | vvD♯, E♭♭ | ^5D, vvE♭ |
6 | 60.5 | 29/28, 30/29 | vD♯, ^E♭♭ | ^6D, vE♭ |
7 | 70.6 | 49/47 | D♯, ^^E♭♭ | ^7D, E♭ |
8 | 80.7 | 22/21, 43/41, 45/43 | ^D♯, ^3E♭♭ | v6D♯, ^E♭ |
9 | 90.8 | 39/37 | ^^D♯, v3E♭ | v5D♯, ^^E♭ |
10 | 100.8 | ^3D♯, vvE♭ | v4D♯, ^3E♭ | |
11 | 110.9 | 16/15, 49/46 | v3D𝄪, vE♭ | v3D♯, ^4E♭ |
12 | 121 | 15/14, 44/41 | vvD𝄪, E♭ | vvD♯, ^5E♭ |
13 | 131.1 | 41/38 | vD𝄪, ^E♭ | vD♯, ^6E♭ |
14 | 141.2 | D𝄪, ^^E♭ | D♯, v7E | |
15 | 151.3 | 12/11 | ^D𝄪, ^3E♭ | ^D♯, v6E |
16 | 161.3 | 45/41 | ^^D𝄪, v3E | ^^D♯, v5E |
17 | 171.4 | 21/19, 32/29 | ^3D𝄪, vvE | ^3D♯, v4E |
18 | 181.5 | v3D♯𝄪, vE | ^4D♯, v3E | |
19 | 191.6 | 48/43 | E | ^5D♯, vvE |
20 | 201.7 | ^E, ^3F♭♭ | ^6D♯, vE | |
21 | 211.8 | 26/23 | ^^E, v3F♭ | E |
22 | 221.8 | ^3E, vvF♭ | ^E, v6F | |
23 | 231.9 | 8/7 | v3E♯, vF♭ | ^^E, v5F |
24 | 242 | 23/20 | vvE♯, F♭ | ^3E, v4F |
25 | 252.1 | 22/19, 37/32 | vE♯, ^F♭ | ^4E, v3F |
26 | 262.2 | 43/37 | E♯, ^^F♭ | ^5E, vvF |
27 | 272.3 | 48/41 | ^E♯, ^3F♭ | ^6E, vF |
28 | 282.4 | 20/17 | ^^E♯, v3F | F |
29 | 292.4 | 45/38 | ^3E♯, vvF | ^F, v6G♭ |
30 | 302.5 | v3E𝄪, vF | ^^F, v5G♭ | |
31 | 312.6 | F | ^3F, v4G♭ | |
32 | 322.7 | 47/39 | ^F, ^3G♭♭♭ | ^4F, v3G♭ |
33 | 332.8 | ^^F, v3G♭♭ | ^5F, vvG♭ | |
34 | 342.9 | 39/32 | ^3F, vvG♭♭ | ^6F, vG♭ |
35 | 352.9 | 38/31, 49/40 | v3F♯, vG♭♭ | ^7F, G♭ |
36 | 363 | 37/30 | vvF♯, G♭♭ | v6F♯, ^G♭ |
37 | 373.1 | vF♯, ^G♭♭ | v5F♯, ^^G♭ | |
38 | 383.2 | F♯, ^^G♭♭ | v4F♯, ^3G♭ | |
39 | 393.3 | 49/39 | ^F♯, ^3G♭♭ | v3F♯, ^4G♭ |
40 | 403.4 | 24/19 | ^^F♯, v3G♭ | vvF♯, ^5G♭ |
41 | 413.4 | 47/37 | ^3F♯, vvG♭ | vF♯, ^6G♭ |
42 | 423.5 | 37/29 | v3F𝄪, vG♭ | F♯, v7G |
43 | 433.6 | vvF𝄪, G♭ | ^F♯, v6G | |
44 | 443.7 | 31/24 | vF𝄪, ^G♭ | ^^F♯, v5G |
45 | 453.8 | 13/10 | F𝄪, ^^G♭ | ^3F♯, v4G |
46 | 463.9 | 17/13 | ^F𝄪, ^3G♭ | ^4F♯, v3G |
47 | 473.9 | 46/35 | ^^F𝄪, v3G | ^5F♯, vvG |
48 | 484 | 37/28, 41/31 | ^3F𝄪, vvG | ^6F♯, vG |
49 | 494.1 | v3F♯𝄪, vG | G | |
50 | 504.2 | G | ^G, v6A♭ | |
51 | 514.3 | 35/26, 39/29 | ^G, ^3A♭♭♭ | ^^G, v5A♭ |
52 | 524.4 | 23/17, 42/31 | ^^G, v3A♭♭ | ^3G, v4A♭ |
53 | 534.5 | ^3G, vvA♭♭ | ^4G, v3A♭ | |
54 | 544.5 | v3G♯, vA♭♭ | ^5G, vvA♭ | |
55 | 554.6 | vvG♯, A♭♭ | ^6G, vA♭ | |
56 | 564.7 | 43/31 | vG♯, ^A♭♭ | ^7G, A♭ |
57 | 574.8 | 39/28 | G♯, ^^A♭♭ | v6G♯, ^A♭ |
58 | 584.9 | ^G♯, ^3A♭♭ | v5G♯, ^^A♭ | |
59 | 595 | 31/22 | ^^G♯, v3A♭ | v4G♯, ^3A♭ |
60 | 605 | 44/31 | ^3G♯, vvA♭ | v3G♯, ^4A♭ |
61 | 615.1 | v3G𝄪, vA♭ | vvG♯, ^5A♭ | |
62 | 625.2 | 43/30 | vvG𝄪, A♭ | vG♯, ^6A♭ |
63 | 635.3 | vG𝄪, ^A♭ | G♯, v7A | |
64 | 645.4 | 45/31 | G𝄪, ^^A♭ | ^G♯, v6A |
65 | 655.5 | ^G𝄪, ^3A♭ | ^^G♯, v5A | |
66 | 665.5 | 47/32 | ^^G𝄪, v3A | ^3G♯, v4A |
67 | 675.6 | 31/21, 34/23 | ^3G𝄪, vvA | ^4G♯, v3A |
68 | 685.7 | v3G♯𝄪, vA | ^5G♯, vvA | |
69 | 695.8 | A | ^6G♯, vA | |
70 | 705.9 | ^A, ^3B♭♭♭ | A | |
71 | 716 | ^^A, v3B♭♭ | ^A, v6B♭ | |
72 | 726.1 | 35/23 | ^3A, vvB♭♭ | ^^A, v5B♭ |
73 | 736.1 | 26/17, 49/32 | v3A♯, vB♭♭ | ^3A, v4B♭ |
74 | 746.2 | 20/13 | vvA♯, B♭♭ | ^4A, v3B♭ |
75 | 756.3 | 48/31 | vA♯, ^B♭♭ | ^5A, vvB♭ |
76 | 766.4 | A♯, ^^B♭♭ | ^6A, vB♭ | |
77 | 776.5 | 47/30 | ^A♯, ^3B♭♭ | ^7A, B♭ |
78 | 786.6 | ^^A♯, v3B♭ | v6A♯, ^B♭ | |
79 | 796.6 | 19/12 | ^3A♯, vvB♭ | v5A♯, ^^B♭ |
80 | 806.7 | v3A𝄪, vB♭ | v4A♯, ^3B♭ | |
81 | 816.8 | vvA𝄪, B♭ | v3A♯, ^4B♭ | |
82 | 826.9 | vA𝄪, ^B♭ | vvA♯, ^5B♭ | |
83 | 837 | 47/29 | A𝄪, ^^B♭ | vA♯, ^6B♭ |
84 | 847.1 | 31/19 | ^A𝄪, ^3B♭ | A♯, v7B |
85 | 857.1 | ^^A𝄪, v3B | ^A♯, v6B | |
86 | 867.2 | ^3A𝄪, vvB | ^^A♯, v5B | |
87 | 877.3 | v3A♯𝄪, vB | ^3A♯, v4B | |
88 | 887.4 | B | ^4A♯, v3B | |
89 | 897.5 | 47/28 | ^B, ^3C♭♭ | ^5A♯, vvB |
90 | 907.6 | 49/29 | ^^B, v3C♭ | ^6A♯, vB |
91 | 917.6 | 17/10 | ^3B, vvC♭ | B |
92 | 927.7 | 41/24 | v3B♯, vC♭ | ^B, v6C |
93 | 937.8 | vvB♯, C♭ | ^^B, v5C | |
94 | 947.9 | 19/11 | vB♯, ^C♭ | ^3B, v4C |
95 | 958 | 40/23 | B♯, ^^C♭ | ^4B, v3C |
96 | 968.1 | 7/4 | ^B♯, ^3C♭ | ^5B, vvC |
97 | 978.2 | ^^B♯, v3C | ^6B, vC | |
98 | 988.2 | 23/13 | ^3B♯, vvC | C |
99 | 998.3 | v3B𝄪, vC | ^C, v6D♭ | |
100 | 1008.4 | 43/24 | C | ^^C, v5D♭ |
101 | 1018.5 | ^C, ^3D♭♭♭ | ^3C, v4D♭ | |
102 | 1028.6 | 29/16, 38/21 | ^^C, v3D♭♭ | ^4C, v3D♭ |
103 | 1038.7 | ^3C, vvD♭♭ | ^5C, vvD♭ | |
104 | 1048.7 | 11/6 | v3C♯, vD♭♭ | ^6C, vD♭ |
105 | 1058.8 | vvC♯, D♭♭ | ^7C, D♭ | |
106 | 1068.9 | vC♯, ^D♭♭ | v6C♯, ^D♭ | |
107 | 1079 | 28/15, 41/22 | C♯, ^^D♭♭ | v5C♯, ^^D♭ |
108 | 1089.1 | 15/8 | ^C♯, ^3D♭♭ | v4C♯, ^3D♭ |
109 | 1099.2 | ^^C♯, v3D♭ | v3C♯, ^4D♭ | |
110 | 1109.2 | ^3C♯, vvD♭ | vvC♯, ^5D♭ | |
111 | 1119.3 | 21/11 | v3C𝄪, vD♭ | vC♯, ^6D♭ |
112 | 1129.4 | vvC𝄪, D♭ | C♯, v7D | |
113 | 1139.5 | 29/15 | vC𝄪, ^D♭ | ^C♯, v6D |
114 | 1149.6 | C𝄪, ^^D♭ | ^^C♯, v5D | |
115 | 1159.7 | 41/21, 43/22 | ^C𝄪, ^3D♭ | ^3C♯, v4D |
116 | 1169.7 | ^^C𝄪, v3D | ^4C♯, v3D | |
117 | 1179.8 | ^3C𝄪, vvD | ^5C♯, vvD | |
118 | 1189.9 | v3C♯𝄪, vD | ^6C♯, vD | |
119 | 1200 | 2/1 | D | D |
Scales
- Approximation of 2/7 comma meantone: 19 19 19 12 19 19 19 19 12
- Approximation of half comma eventone: 23 23 2 23 23 23 2, 7 2 2 2 2 2 2 2 2 7 2 2 2 2 2 2 2 2 2 7 2 2 2 2 2 2 2 2 7 2 2 2 2 2 2 2 2 7 2 2 2 2 2 2 2 2 2