# Archytas clan

(Redirected from Archy)

The archytas clan (or archy family) tempers out the Archytas' comma, 64/63. This means that four stacked 3/2 fifths equal a 9/7 major third. (Note the similarity in function to 81/80 in meantone, where four stacked 3/2 fifths equal a 5/4 major third.) This leads to tunings with 3's and 7's quite sharp, such as those of 22edo.

## Archy

Subgroup: 2.3.7

Comma list: 64/63

Sval mapping[1 0 6], 0 1 -2]]

sval mapping generators: ~2, ~3

Gencom mapping[1 1 0 4], 0 1 0 -2]]

gencom: [2 3/2; 64/63]

Optimal tuning (POTE): ~3/2 = 709.321

Scales: archy5, archy7, archy12

### Overview to extensions

Adding 245/243 to the list of commas gives superpyth; 2430/2401 gives quasisuper; 36/35 gives dominant; 360/343 gives schism; 6860/6561 gives ultrapyth; 33614/32805 gives quasiultra; 16/15 gives mother. These all use the same generators as archy.

50/49 gives pajara with a semioctave period. 126/125 gives augene with a 1/3-octave period. 28/27 gives blacksmith with a 1/5-octave period. 686/675 gives beatles, splitting the fifth in two. 250/243 gives porcupine, splitting the fourth in three. 4375/4374 gives modus, splitting the fifth in four. 3125/3087 gives passion, splitting the fourth in five.

Discussed under their respective 5-limit families are:

The rest are considered below.

### Supra

Subgroup: 2.3.7.11

Comma list: 64/63, 99/98

Sval mapping: [1 0 6 13], 0 1 -2 -6]]

Gencom mapping: [1 1 0 4 7], 0 1 0 -2 -6]]

gencom: [2 3/2; 64/63 99/98]

Optimal tuning (POTE): ~3/2 = 707.192

Scales: supra7, supra12

#### Supraphon

Subgroup: 2.3.7.11.13

Comma list: 64/63, 78/77, 99/98

Sval mapping: [1 0 6 13 18], 0 1 -2 -6 -9]]

Gencom mapping: [1 1 0 4 7 9], 0 1 0 -2 -6 -9]]

gencom: [2 3/2; 64/63 78/77 99/98]

Optimal tuning (POTE): ~3/2 = 706.137

Scales: supra7, supra12

## Superpyth

In the 5-limit, superpyth tempers out 20480/19683. This temperament has a fifth generator of ~3/2 = ~710¢ and ~5/4 is found at +9 generator steps, as an augmented second (C-D#). It also has a weak extension, bipyth (10cd & 22), tempering out the same 5-limit comma as the superpyth, but with a half-octave period and the jubilisma (50/49) rather than the Archytas comma tempered out.

Subgroup: 2.3.5

Comma list: 20480/19683

Mapping[1 0 -12], 0 1 9]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 710.078

### 7-limit

Subgroup: 2.3.5.7

Comma list: 64/63, 245/243

Mapping[1 0 -12 6], 0 1 9 -2]]

Wedgie⟨⟨1 9 -2 12 -6 -30]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 710.291

### 11-limit

The canonical extension to the 13-limit finds the ~11/8 at +16 generator steps, as a double augmented second (C-Dx) and finds the ~13/8 at +13 generator steps, as a double augmented fourth (C-Fx).

Subgroup: 2.3.5.7.11

Comma list: 64/63, 100/99, 245/243

Mapping: [1 0 -12 6 -22], 0 1 9 -2 16]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 710.175

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 64/63, 78/77, 91/90, 100/99

Mapping: [1 0 -12 6 -22 -17], 0 1 9 -2 16 13]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 710.479

#### Thomas

Subgroup: 2.3.5.7.11.13

Comma list: 64/63, 100/99, 169/168, 245/243

Mapping: [1 1 -3 4 -6 4], 0 2 18 -4 32 -1]]

Optimal tuning (POTE): ~2 = 1\1, ~16/13 = 355.036

### Suprapyth

Suprapyth finds the ~11/8 at the diminished fifth (C-Gb), and finds the ~13/8 at the diminished seventh (C-Bbb).

Subgroup: 2.3.5.7.11

Comma list: 55/54, 64/63, 99/98

Mapping: [1 0 -12 6 13], 0 1 9 -2 -6]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 709.495

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 55/54, 64/63, 65/63, 99/98

Mapping: [1 0 -12 6 13 18], 0 1 9 -2 -6 -9]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 708.703

## Quasisuper

Quasisuper can be described as 17c & 22, with the ~5/4 mapped to -13 generator steps, as a double diminished fifth (C-Gbb).

Subgroup: 2.3.5.7

Comma list: 64/63, 2430/2401

Mapping[1 0 23 6], 0 1 -13 -2]]

Wedgie⟨⟨1 -13 -2 -23 -6 32]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 708.328

### Quasisupra

Quasisupra can be viewed as an extension of the excellent 2.3.7.11 temperament supra, with the quasisuper mapping of 5 thrown in, rather than the superpyth mapping of 5 (which results in suprapyth).

Subgroup: 2.3.5.7.11

Comma list: 64/63, 99/98, 121/120

Mapping: [1 0 23 6 13], 0 1 -13 -2 -6]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 708.205

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 64/63, 78/77, 91/90, 121/120

Mapping: [1 0 23 6 13 18], 0 1 -13 -2 -6 -9]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 708.004

### Quasisoup

Subgroup: 2.3.5.7.11

Comma list: 55/54, 64/63, 2430/2401

Mapping: [1 0 23 6 -22], 0 1 -13 -2 16]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 709.021

## Ultrapyth

Ultrapyth can be viewed as an extension of the excellent 2.3.7.13/5 oceanfront temperament, mapping the ~5/4 to +14 fifths as a double augmented unison (C-Cx).

Subgroup: 2.3.5.7

Comma list: 64/63, 6860/6561

Mapping[1 0 -20 6], 0 1 14 -2]]

Wedgie⟨⟨1 14 -2 20 -6 -44]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 713.651

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 55/54, 64/63, 2401/2376

Mapping: [1 0 -20 6 21], 0 1 14 -2 -11]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 713.395

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 55/54, 64/63, 91/90, 1573/1568

Mapping: [1 0 -20 6 21 -25], 0 1 14 -2 -11 18]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 713.500

### Ultramarine

Subgroup: 2.3.5.7.11

Comma list: 64/63, 100/99, 3773/3645

Mapping: [1 0 -20 6 -38], 0 1 14 -2 26]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 713.791

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 64/63, 91/90, 100/99, 847/845

Mapping: [1 0 -20 6 -38 -25], 0 1 14 -2 26 18]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 713.811

## Quasiultra

Quasiultra is to ultrapyth what quasisuper is to superpyth. It is the 27 & 32 temperament, mapping the ~5/4 to -18 fifths as a double diminished sixth (C-Abbb).

Subgroup: 2.3.5.7

Comma list: 64/63, 33614/32805

Mapping[1 0 31 6], 0 1 -18 -2]]

Wedgie⟨⟨1 -18 -2 -31 -6 46]]

• CTE: ~2 = 1\1, ~3/2 = 711.8377
• CWE: ~2 = 1\1, ~3/2 = 711.5429

## Schism

Schism tempers out the schisma, mapping the ~5/4 to -8 fifths as a diminished fourth (C-Fb) as does any schismic temperament.

Subgroup: 2.3.5.7

Comma list: 64/63, 360/343

Mapping[1 0 15 6], 0 1 -8 -2]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 701.556

Wedgie⟨⟨1 -8 -2 -15 -6 18]]

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 45/44, 64/63, 99/98

Mapping: [1 0 15 6 13], 0 1 -8 -2 -6]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 702.136

## Beatles

For the 5-limit version of this temperament, see High badness temperaments #Beatles.

Subgroup: 2.3.5.7

Comma list: 64/63, 686/675

Mapping[1 1 5 4], 0 2 -9 -4]]

Wedgie⟨⟨2 -9 -4 -19 -12 16]]

Optimal tuning (POTE): ~2 = 1\1, ~49/40 = 355.904

Music

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 64/63, 100/99, 686/675

Mapping: [1 1 5 4 10], 0 2 -9 -4 -22]]

Optimal tuning (POTE): ~2 = 1\1, ~49/40 = 356.140

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 64/63, 91/90, 100/99, 169/168

Mapping: [1 1 5 4 10 4], 0 2 -9 -4 -22 -1]]

Optimal tuning (POTE): ~2 = 1\1, ~16/13 = 356.229

### Ringo

Subgroup: 2.3.5.7.11

Comma list: 56/55, 64/63, 540/539

Mapping: [1 1 5 4 2], 0 2 -9 -4 5]]

Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 355.419

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 56/55, 64/63, 78/77, 91/90

Mapping: [1 1 5 4 2 4], 0 2 -9 -4 5 -1]]

Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 355.456

### Beetle

Subgroup: 2.3.5.7.11

Comma list: 55/54, 64/63, 686/675

Mapping: [1 1 5 4 -1], 0 2 -9 -4 15]]

Optimal tuning (POTE): ~2 = 1\1, ~49/40 = 356.710

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 55/54, 64/63, 91/90, 169/168

Mapping: [1 1 5 4 -1 4], 0 2 -9 -4 15 -1]]

Optimal tuning (POTE): ~2 = 1\1, ~16/13 = 356.701

## Fervor

For the 5-limit version of this temperament, see High badness temperaments #Fervor.

Subgroup: 2.3.5.7

Comma list: 64/63, 9604/9375

Mapping[1 4 -2 -2], 0 -5 9 10]]

Wedgie⟨⟨5 -9 -10 -26 -30 2]]

Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 577.776

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 56/55, 64/63, 1350/1331

Mapping: [1 4 -2 -2 3], 0 -5 9 10 1]]

Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 577.850

### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 56/55, 64/63, 78/77, 507/500

Mapping: [1 4 -2 -2 3 -4], 0 -5 9 10 1 16]]

Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 578.060

## Progress

For the 5-limit version of this temperament, see High badness temperaments #Progress.

Subgroup: 2.3.5.7

Comma list: 64/63, 392/375

Mapping[1 0 5 6], 0 3 -5 -6]]

Wedgie⟨⟨3 -5 -6 -15 -18 0]]

Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 562.122

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 56/55, 64/63, 77/75

Mapping: [1 0 5 6 4], 0 3 -5 -6 -1]]

Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 562.085

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 56/55, 64/63, 66/65, 77/75

Mapping: [1 0 5 6 4 0], 0 3 -5 -6 -1 7]]

Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 562.365

#### Progressive

Subgroup: 2.3.5.7.11.13

Comma list: 26/25, 56/55, 64/63, 77/75

Mapping: [1 0 5 6 4 9], 0 3 -5 -6 -1 -10]]

Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 563.239

## Sixix

Sixix is related to the Kleismic family in a way similar to the one between Meantone and Mavila. In both cases the generator is nominally a 6/5 and the complexity to generate major and minor chords is the same, but in sixix it is tuned extremely sharply, to the point where the 3rd and 5th harmonics are reached by going down instead of up, inverting the logic of chord construction.

Subgroup: 2.3.5

Comma list: 3125/2916

Mapping[1 3 4], 0 -5 -6]]

Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 338.365

### 7-limit

Subgroup: 2.3.5.7

Comma list: 64/63, 3125/2916

Mapping[1 3 4 0], 0 -5 -6 10]]

Wedgie⟨⟨5 6 -10 -2 -30 -40]]

Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 337.442

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 55/54, 64/63, 125/121

Mapping: [1 3 4 0 6], 0 -5 -6 10 -9]]

Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 337.564

Optimal ET sequence: 7, 25e, 32

### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 40/39, 55/54, 64/63, 125/121

Mapping: [1 3 4 0 6 4], 0 -5 -6 10 -9 -1]]

Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 337.483

Optimal ET sequence: 7, 25e, 32f

### 17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 40/39, 55/54, 64/63, 85/84, 125/121

Mapping: [1 3 4 0 6 4 1], 0 -5 -6 10 -9 -1 11]]

Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 337.513

Optimal ET sequence: 7, 25e, 32f