5L 7s
↖ 4L 6s | ↑ 5L 6s | 6L 6s ↗ |
← 4L 7s | 5L 7s | 6L 7s → |
↙ 4L 8s | ↓ 5L 8s | 6L 8s ↘ |
┌╥┬╥┬╥┬┬╥┬╥┬┬┐ │║│║│║││║│║│││ ││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┘
ssLsLssLsLsL
5L 7s, also called p-chromatic, is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 5 large steps and 7 small steps, repeating every octave. 5L 7s is a child scale of 5L 2s, expanding it by 5 tones. Generators that produce this scale range from 700 ¢ to 720 ¢, or from 480 ¢ to 500 ¢. 5L 7s represents the chromatic scales of Pythagorean/schismic and superpyth, the former being proper but the latter improper until expanded by 5 more notes, producing Superpyth[17]. Such scales are characterized by having a small step (diatonic semitone) that is smaller than the chroma (chromatic semitone), the reverse of 7L 5s.
The two distinct harmonic entropy minima are, on the one hand, scales very close to Pythagorean tuning or the schismatic temperament, and on the other hand, the simpler and less accurate temperament known as superpyth in which 64/63 is tempered out.
Scale properties
- This article uses TAMNAMS conventions for the names of this scale's intervals and scale degrees. The use of 1-indexed ordinal names is reserved for interval regions.
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0 ¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0 ¢ to 100.0 ¢ |
Major 1-mosstep | M1ms | L | 100.0 ¢ to 240.0 ¢ | |
2-mosstep | Minor 2-mosstep | m2ms | 2s | 0.0 ¢ to 200.0 ¢ |
Major 2-mosstep | M2ms | L + s | 200.0 ¢ to 240.0 ¢ | |
3-mosstep | Minor 3-mosstep | m3ms | L + 2s | 240.0 ¢ to 300.0 ¢ |
Major 3-mosstep | M3ms | 2L + s | 300.0 ¢ to 480.0 ¢ | |
4-mosstep | Minor 4-mosstep | m4ms | L + 3s | 240.0 ¢ to 400.0 ¢ |
Major 4-mosstep | M4ms | 2L + 2s | 400.0 ¢ to 480.0 ¢ | |
5-mosstep | Perfect 5-mosstep | P5ms | 2L + 3s | 480.0 ¢ to 500.0 ¢ |
Augmented 5-mosstep | A5ms | 3L + 2s | 500.0 ¢ to 720.0 ¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 2L + 4s | 480.0 ¢ to 600.0 ¢ |
Major 6-mosstep | M6ms | 3L + 3s | 600.0 ¢ to 720.0 ¢ | |
7-mosstep | Diminished 7-mosstep | d7ms | 2L + 5s | 480.0 ¢ to 700.0 ¢ |
Perfect 7-mosstep | P7ms | 3L + 4s | 700.0 ¢ to 720.0 ¢ | |
8-mosstep | Minor 8-mosstep | m8ms | 3L + 5s | 720.0 ¢ to 800.0 ¢ |
Major 8-mosstep | M8ms | 4L + 4s | 800.0 ¢ to 960.0 ¢ | |
9-mosstep | Minor 9-mosstep | m9ms | 3L + 6s | 720.0 ¢ to 900.0 ¢ |
Major 9-mosstep | M9ms | 4L + 5s | 900.0 ¢ to 960.0 ¢ | |
10-mosstep | Minor 10-mosstep | m10ms | 4L + 6s | 960.0 ¢ to 1000.0 ¢ |
Major 10-mosstep | M10ms | 5L + 5s | 1000.0 ¢ to 1200.0 ¢ | |
11-mosstep | Minor 11-mosstep | m11ms | 4L + 7s | 960.0 ¢ to 1100.0 ¢ |
Major 11-mosstep | M11ms | 5L + 6s | 1100.0 ¢ to 1200.0 ¢ | |
12-mosstep | Perfect 12-mosstep | P12ms | 5L + 7s | 1200.0 ¢ |
Generator chain
Bright gens | Scale degree | Abbrev. |
---|---|---|
16 | Augmented 4-mosdegree | A4md |
15 | Augmented 9-mosdegree | A9md |
14 | Augmented 2-mosdegree | A2md |
13 | Augmented 7-mosdegree | A7md |
12 | Augmented 0-mosdegree | A0md |
11 | Augmented 5-mosdegree | A5md |
10 | Major 10-mosdegree | M10md |
9 | Major 3-mosdegree | M3md |
8 | Major 8-mosdegree | M8md |
7 | Major 1-mosdegree | M1md |
6 | Major 6-mosdegree | M6md |
5 | Major 11-mosdegree | M11md |
4 | Major 4-mosdegree | M4md |
3 | Major 9-mosdegree | M9md |
2 | Major 2-mosdegree | M2md |
1 | Perfect 7-mosdegree | P7md |
0 | Perfect 0-mosdegree Perfect 12-mosdegree |
P0md P12md |
−1 | Perfect 5-mosdegree | P5md |
−2 | Minor 10-mosdegree | m10md |
−3 | Minor 3-mosdegree | m3md |
−4 | Minor 8-mosdegree | m8md |
−5 | Minor 1-mosdegree | m1md |
−6 | Minor 6-mosdegree | m6md |
−7 | Minor 11-mosdegree | m11md |
−8 | Minor 4-mosdegree | m4md |
−9 | Minor 9-mosdegree | m9md |
−10 | Minor 2-mosdegree | m2md |
−11 | Diminished 7-mosdegree | d7md |
−12 | Diminished 12-mosdegree | d12md |
−13 | Diminished 5-mosdegree | d5md |
−14 | Diminished 10-mosdegree | d10md |
−15 | Diminished 3-mosdegree | d3md |
−16 | Diminished 8-mosdegree | d8md |
Modes
UDP | Cyclic order |
Step pattern |
Scale degree (mosdegree) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |||
11|0 | 1 | LsLsLssLsLss | Perf. | Maj. | Maj. | Maj. | Maj. | Aug. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Perf. |
10|1 | 8 | LsLssLsLsLss | Perf. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Perf. |
9|2 | 3 | LsLssLsLssLs | Perf. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Perf. | Maj. | Maj. | Min. | Maj. | Perf. |
8|3 | 10 | LssLsLsLssLs | Perf. | Maj. | Maj. | Min. | Maj. | Perf. | Maj. | Perf. | Maj. | Maj. | Min. | Maj. | Perf. |
7|4 | 5 | LssLsLssLsLs | Perf. | Maj. | Maj. | Min. | Maj. | Perf. | Maj. | Perf. | Min. | Maj. | Min. | Maj. | Perf. |
6|5 | 12 | sLsLsLssLsLs | Perf. | Min. | Maj. | Min. | Maj. | Perf. | Maj. | Perf. | Min. | Maj. | Min. | Maj. | Perf. |
5|6 | 7 | sLsLssLsLsLs | Perf. | Min. | Maj. | Min. | Maj. | Perf. | Min. | Perf. | Min. | Maj. | Min. | Maj. | Perf. |
4|7 | 2 | sLsLssLsLssL | Perf. | Min. | Maj. | Min. | Maj. | Perf. | Min. | Perf. | Min. | Maj. | Min. | Min. | Perf. |
3|8 | 9 | sLssLsLsLssL | Perf. | Min. | Maj. | Min. | Min. | Perf. | Min. | Perf. | Min. | Maj. | Min. | Min. | Perf. |
2|9 | 4 | sLssLsLssLsL | Perf. | Min. | Maj. | Min. | Min. | Perf. | Min. | Perf. | Min. | Min. | Min. | Min. | Perf. |
1|10 | 11 | ssLsLsLssLsL | Perf. | Min. | Min. | Min. | Min. | Perf. | Min. | Perf. | Min. | Min. | Min. | Min. | Perf. |
0|11 | 6 | ssLsLssLsLsL | Perf. | Min. | Min. | Min. | Min. | Perf. | Min. | Dim. | Min. | Min. | Min. | Min. | Perf. |
Proposed names
The modes are named by Eliora after Chinese zodiac animals. 5L 7s is the opposite mos to 7L 5s, named after a Western concept, Gregorian months, therefore this mos scale has Eastern nomenclature. Furthermore, 12edo (equalized tuning of this MOS) was independently discovered in China.
UDP | Cyclic order |
Step pattern |
Mode names |
---|---|---|---|
11|0 | 1 | LsLsLssLsLss | Rat |
10|1 | 8 | LsLssLsLsLss | Ox |
9|2 | 3 | LsLssLsLssLs | Tiger |
8|3 | 10 | LssLsLsLssLs | Rabbit |
7|4 | 5 | LssLsLssLsLs | Dragon |
6|5 | 12 | sLsLsLssLsLs | Snake |
5|6 | 7 | sLsLssLsLsLs | Horse |
4|7 | 2 | sLsLssLsLssL | Goat |
3|8 | 9 | sLssLsLsLssL | Monkey |
2|9 | 4 | sLssLsLssLsL | Rooster |
1|10 | 11 | ssLsLsLssLsL | Dog |
0|11 | 6 | ssLsLssLsLsL | Pig |
Scales
- Pythagorean12 – Pythagorean tuning
- Garibaldi12 – 94edo tuning
- Cotoneum12 – 217edo tuning
- Edson12 – 29edo tuning
- Pepperoni12 – 271edo tuning
- Supra12 – 56edo tuning
- Archy12 – 472edo tuning
- 12-22a – 22edo tuning
Scale tree
Generator(edo) | Cents | Step ratio | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
7\12 | 700.000 | 500.000 | 1:1 | 1.000 | Equalized 5L 7s | |||||
38\65 | 701.538 | 498.462 | 6:5 | 1.200 | Photia, ↑ grackle | |||||
31\53 | 701.887 | 498.113 | 5:4 | 1.250 | Helmholtz, Pythagorean tuning (701.955 ¢) | |||||
55\94 | 702.128 | 497.872 | 9:7 | 1.286 | Garibaldi / cassandra | |||||
24\41 | 702.439 | 497.561 | 4:3 | 1.333 | Supersoft 5L 7s Garibaldi / andromeda | |||||
65\111 | 702.703 | 497.297 | 11:8 | 1.375 | Kwai | |||||
41\70 | 702.857 | 497.143 | 7:5 | 1.400 | ||||||
58\99 | 703.030 | 496.970 | 10:7 | 1.429 | Undecental, argent tuning (702.944 ¢) | |||||
17\29 | 703.448 | 496.552 | 3:2 | 1.500 | Soft 5L 7s Edson | |||||
61\104 | 703.846 | 496.154 | 11:7 | 1.571 | ||||||
44\75 | 704.000 | 496.000 | 8:5 | 1.600 | ||||||
71\121 | 704.132 | 495.868 | 13:8 | 1.625 | Polypyth, golden neogothic (704.096 ¢) | |||||
27\46 | 704.348 | 495.652 | 5:3 | 1.667 | Semisoft 5L 7s Leapday | |||||
64\109 | 704.587 | 495.413 | 12:7 | 1.714 | Leapweek | |||||
37\63 | 704.762 | 495.238 | 7:4 | 1.750 | ||||||
47\80 | 705.000 | 495.000 | 9:5 | 1.800 | ||||||
10\17 | 705.882 | 494.118 | 2:1 | 2.000 | Basic 5L 7s Scales with tunings softer than this are proper | |||||
43\73 | 706.849 | 493.151 | 9:4 | 2.250 | ||||||
33\56 | 707.143 | 492.857 | 7:3 | 2.333 | Supra | |||||
56\95 | 707.368 | 492.632 | 12:5 | 2.400 | ||||||
23\39 | 707.692 | 492.308 | 5:2 | 2.500 | Semihard 5L 7s | |||||
59\100 | 708.000 | 492.000 | 13:5 | 2.600 | Golden supra (708.054 ¢) | |||||
36\61 | 708.197 | 491.803 | 8:3 | 2.667 | Quasisuper / quasisupra | |||||
49\83 | 708.434 | 491.566 | 11:4 | 2.750 | ||||||
13\22 | 709.091 | 490.909 | 3:1 | 3.000 | Hard 5L 7s Suprapyth | |||||
42\71 | 709.859 | 490.141 | 10:3 | 3.333 | ||||||
29\49 | 710.204 | 489.796 | 7:2 | 3.500 | Superpyth | |||||
45\76 | 710.526 | 489.474 | 11:3 | 3.667 | ||||||
16\27 | 711.111 | 488.889 | 4:1 | 4.000 | Superhard 5L 7s | |||||
35\59 | 711.864 | 488.136 | 9:2 | 4.500 | ||||||
19\32 | 712.500 | 487.500 | 5:1 | 5.000 | ||||||
22\37 | 713.514 | 486.486 | 6:1 | 6.000 | ↓ Oceanfront / ultrapyth | |||||
3\5 | 720.000 | 480.000 | 1:0 | → ∞ | Collapsed 5L 7s |