5L 6s
↖ 4L 5s | ↑ 5L 5s | 6L 5s ↗ |
← 4L 6s | 5L 6s | 6L 6s → |
↙ 4L 7s | ↓ 5L 7s | 6L 7s ↘ |
┌╥┬╥┬╥┬╥┬╥┬┬┐ │║│║│║│║│║│││ │││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┘
ssLsLsLsLsL
5L 6s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 5 large steps and 6 small steps, repeating every octave. 5L 6s is a child scale of 5L 1s, expanding it by 5 tones. Generators that produce this scale range from 218.2¢ to 240¢, or from 960¢ to 981.8¢.
This pattern has multiple significant harmonic entropy minima, but they are all improper. The only saving grace for it is that is has harmonic entropy minima where the ratio between the large and small steps is optimal for melody, and that the generator for these scales is less than 6 cents flat of 8/7. The saving grace of the more lopsided scales is that a syntonic fifth is three generators up from the root. The name for this MOS pattern is p-chro machinoid, although the alternative name mothroid was given by CompactStar as part of their temperament-centric MOS naming system (TCMNAMS).
Scale properties
Intervals
The intervals of 5L 6s are named after the number of mossteps (L and s) they subtend. Each interval, apart from the root and octave (perfect 0-mosstep and perfect 11-mosstep), has two varieties, or sizes, each. Interval varieties are named major and minor for the large and small sizes, respectively, and augmented, perfect, and diminished for the scale's generators.
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0¢ to 109.1¢ |
Major 1-mosstep | M1ms | L | 109.1¢ to 240.0¢ | |
2-mosstep | Diminished 2-mosstep | d2ms | 2s | 0.0¢ to 218.2¢ |
Perfect 2-mosstep | P2ms | L + s | 218.2¢ to 240.0¢ | |
3-mosstep | Minor 3-mosstep | m3ms | L + 2s | 240.0¢ to 327.3¢ |
Major 3-mosstep | M3ms | 2L + s | 327.3¢ to 480.0¢ | |
4-mosstep | Minor 4-mosstep | m4ms | L + 3s | 240.0¢ to 436.4¢ |
Major 4-mosstep | M4ms | 2L + 2s | 436.4¢ to 480.0¢ | |
5-mosstep | Minor 5-mosstep | m5ms | 2L + 3s | 480.0¢ to 545.5¢ |
Major 5-mosstep | M5ms | 3L + 2s | 545.5¢ to 720.0¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 2L + 4s | 480.0¢ to 654.5¢ |
Major 6-mosstep | M6ms | 3L + 3s | 654.5¢ to 720.0¢ | |
7-mosstep | Minor 7-mosstep | m7ms | 3L + 4s | 720.0¢ to 763.6¢ |
Major 7-mosstep | M7ms | 4L + 3s | 763.6¢ to 960.0¢ | |
8-mosstep | Minor 8-mosstep | m8ms | 3L + 5s | 720.0¢ to 872.7¢ |
Major 8-mosstep | M8ms | 4L + 4s | 872.7¢ to 960.0¢ | |
9-mosstep | Perfect 9-mosstep | P9ms | 4L + 5s | 960.0¢ to 981.8¢ |
Augmented 9-mosstep | A9ms | 5L + 4s | 981.8¢ to 1200.0¢ | |
10-mosstep | Minor 10-mosstep | m10ms | 4L + 6s | 960.0¢ to 1090.9¢ |
Major 10-mosstep | M10ms | 5L + 5s | 1090.9¢ to 1200.0¢ | |
11-mosstep | Perfect 11-mosstep | P11ms | 5L + 6s | 1200.0¢ |
Generator chain
A chain of bright generators, each a perfect 2-mosstep, produces the following scale degrees. A chain of 11 bright generators contains the scale degrees of one of the modes of 5L 6s. Expanding the chain to 16 scale degrees produces the modes of either 11L 5s (for soft-of-basic tunings) or 5L 11s (for hard-of-basic tunings).
Bright gens | Scale Degree | Abbrev. |
---|---|---|
15 | Augmented 8-mosdegree | A8md |
14 | Augmented 6-mosdegree | A6md |
13 | Augmented 4-mosdegree | A4md |
12 | Augmented 2-mosdegree | A2md |
11 | Augmented 0-mosdegree | A0md |
10 | Augmented 9-mosdegree | A9md |
9 | Major 7-mosdegree | M7md |
8 | Major 5-mosdegree | M5md |
7 | Major 3-mosdegree | M3md |
6 | Major 1-mosdegree | M1md |
5 | Major 10-mosdegree | M10md |
4 | Major 8-mosdegree | M8md |
3 | Major 6-mosdegree | M6md |
2 | Major 4-mosdegree | M4md |
1 | Perfect 2-mosdegree | P2md |
0 | Perfect 0-mosdegree Perfect 11-mosdegree |
P0md P11md |
-1 | Perfect 9-mosdegree | P9md |
-2 | Minor 7-mosdegree | m7md |
-3 | Minor 5-mosdegree | m5md |
-4 | Minor 3-mosdegree | m3md |
-5 | Minor 1-mosdegree | m1md |
-6 | Minor 10-mosdegree | m10md |
-7 | Minor 8-mosdegree | m8md |
-8 | Minor 6-mosdegree | m6md |
-9 | Minor 4-mosdegree | m4md |
-10 | Diminished 2-mosdegree | d2md |
-11 | Diminished 11-mosdegree | d11md |
-12 | Diminished 9-mosdegree | d9md |
-13 | Diminished 7-mosdegree | d7md |
-14 | Diminished 5-mosdegree | d5md |
-15 | Diminished 3-mosdegree | d3md |
Modes
UDP | Cyclic order |
Step pattern |
Scale degree (mosdegree) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |||
10|0 | 1 | LsLsLsLsLss | Perf. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Aug. | Maj. | Perf. |
9|1 | 3 | LsLsLsLssLs | Perf. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Perf. |
8|2 | 5 | LsLsLssLsLs | Perf. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Min. | Maj. | Perf. | Maj. | Perf. |
7|3 | 7 | LsLssLsLsLs | Perf. | Maj. | Perf. | Maj. | Maj. | Min. | Maj. | Min. | Maj. | Perf. | Maj. | Perf. |
6|4 | 9 | LssLsLsLsLs | Perf. | Maj. | Perf. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Perf. | Maj. | Perf. |
5|5 | 11 | sLsLsLsLsLs | Perf. | Min. | Perf. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Perf. | Maj. | Perf. |
4|6 | 2 | sLsLsLsLssL | Perf. | Min. | Perf. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Perf. | Min. | Perf. |
3|7 | 4 | sLsLsLssLsL | Perf. | Min. | Perf. | Min. | Maj. | Min. | Maj. | Min. | Min. | Perf. | Min. | Perf. |
2|8 | 6 | sLsLssLsLsL | Perf. | Min. | Perf. | Min. | Maj. | Min. | Min. | Min. | Min. | Perf. | Min. | Perf. |
1|9 | 8 | sLssLsLsLsL | Perf. | Min. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Min. | Perf. |
0|10 | 10 | ssLsLsLsLsL | Perf. | Min. | Dim. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Min. | Perf. |
Scale tree
Generator(edo) | Cents | Step ratio | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
2\11 | 218.182 | 981.818 | 1:1 | 1.000 | Equalized 5L 6s | |||||
11\60 | 220.000 | 980.000 | 6:5 | 1.200 | ||||||
9\49 | 220.408 | 979.592 | 5:4 | 1.250 | ||||||
16\87 | 220.690 | 979.310 | 9:7 | 1.286 | ||||||
7\38 | 221.053 | 978.947 | 4:3 | 1.333 | Supersoft 5L 6s | |||||
19\103 | 221.359 | 978.641 | 11:8 | 1.375 | ||||||
12\65 | 221.538 | 978.462 | 7:5 | 1.400 | ||||||
17\92 | 221.739 | 978.261 | 10:7 | 1.429 | ||||||
5\27 | 222.222 | 977.778 | 3:2 | 1.500 | Soft 5L 6s | |||||
18\97 | 222.680 | 977.320 | 11:7 | 1.571 | ||||||
13\70 | 222.857 | 977.143 | 8:5 | 1.600 | ||||||
21\113 | 223.009 | 976.991 | 13:8 | 1.625 | ||||||
8\43 | 223.256 | 976.744 | 5:3 | 1.667 | Semisoft 5L 6s | |||||
19\102 | 223.529 | 976.471 | 12:7 | 1.714 | ||||||
11\59 | 223.729 | 976.271 | 7:4 | 1.750 | ||||||
14\75 | 224.000 | 976.000 | 9:5 | 1.800 | ||||||
3\16 | 225.000 | 975.000 | 2:1 | 2.000 | Basic 5L 6s Scales with tunings softer than this are proper | |||||
13\69 | 226.087 | 973.913 | 9:4 | 2.250 | ||||||
10\53 | 226.415 | 973.585 | 7:3 | 2.333 | ||||||
17\90 | 226.667 | 973.333 | 12:5 | 2.400 | ||||||
7\37 | 227.027 | 972.973 | 5:2 | 2.500 | Semihard 5L 6s | |||||
18\95 | 227.368 | 972.632 | 13:5 | 2.600 | ||||||
11\58 | 227.586 | 972.414 | 8:3 | 2.667 | ||||||
15\79 | 227.848 | 972.152 | 11:4 | 2.750 | ||||||
4\21 | 228.571 | 971.429 | 3:1 | 3.000 | Hard 5L 6s | |||||
13\68 | 229.412 | 970.588 | 10:3 | 3.333 | ||||||
9\47 | 229.787 | 970.213 | 7:2 | 3.500 | ||||||
14\73 | 230.137 | 969.863 | 11:3 | 3.667 | ||||||
5\26 | 230.769 | 969.231 | 4:1 | 4.000 | Superhard 5L 6s | |||||
11\57 | 231.579 | 968.421 | 9:2 | 4.500 | Cynder | |||||
6\31 | 232.258 | 967.742 | 5:1 | 5.000 | Mothra | |||||
7\36 | 233.333 | 966.667 | 6:1 | 6.000 | Slendric, ↓ Rodan | |||||
1\5 | 240.000 | 960.000 | 1:0 | → ∞ | Collapsed 5L 6s |