75edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 74edo75edo76edo →
Prime factorization 3 × 52
Step size 16¢
Fifth 44\75 (704¢)
Semitones (A1:m2) 8:5 (128¢ : 80¢)
Consistency limit 5
Distinct consistency limit 5

75 equal divisions of the octave (abbreviated 75edo or 75ed2), also called 75-tone equal temperament (75tet) or 75 equal temperament (75et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 75 equal parts of exactly 16 ¢ each. Each step represents a frequency ratio of 21/75, or the 75th root of 2.

Theory

75et tempers out 20000/19683 (tetracot comma) and 2109375/2097152 (semicomma) in the 5-limit, and provides a good tuning for the tetracot temperament. It tempers out 225/224 and 1728/1715 in the 7-limit, supporting bunya and orwell, and providing the optimal patent val for fog.

In the 11-limit, 75e val 75 119 174 211 260] scores lower in error, and tempers 100/99 and 243/242, whereas the patent val 75 119 174 211 259] tempers 99/98 and 121/120. In the 13-limit, it tempers 325/324 and 512/507, 17-limit 120/119 and 256/255 and 19-limit 190/189 and 250/247.

Since 75 is part of the Fibonacci sequence beginning with 5 and 12, it closely approximates the peppermint temperament. The size of its fifth is exactly 704  ¢, which is very close to the peppermint fifth of 704.096  ¢. This makes it suitable for neo-Gothic tunings. It also approximates the Carlos Beta scale well (4\75 ≈ 1\[Carlos Beta]).

Odd harmonics

Approximation of odd harmonics in 75edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error absolute (¢) +2.04 -2.31 +7.17 +4.09 -7.32 +7.47 -0.27 +7.04 +6.49 -6.78 -4.27
relative (%) +13 -14 +45 +26 -46 +47 -2 +44 +41 -42 -27
Steps
(reduced)
119
(44)
174
(24)
211
(61)
238
(13)
259
(34)
278
(53)
293
(68)
307
(7)
319
(19)
329
(29)
339
(39)

Intervals

Steps Cents Ups and downs notation Approximate ratios
0 0 D 1/1
1 16 ↑D, ↓4E♭
2 32 ↑↑D, ↓3E♭ 65/64
3 48 3D, ↓↓E♭ 33/32, 36/35, 65/63, 77/75
4 64 4D, ↓E♭ 27/26, 28/27, 80/77
5 80 5D, E♭
6 96 6D, ↓7E
7 112 7D, ↓6E 16/15, 77/72
8 128 D♯, ↓5E 14/13
9 144 ↑D♯, ↓4E 13/12
10 160 ↑↑D♯, ↓3E 11/10, 35/32
11 176 3D♯, ↓↓E 72/65
12 192 4D♯, ↓E 39/35
13 208 E 9/8
14 224 ↑E, ↓4F 25/22
15 240 ↑↑E, ↓3F
16 256 3E, ↓↓F 52/45, 65/56, 81/70
17 272 4E, ↓F 7/6, 75/64
18 288 F 32/27, 77/65
19 304 ↑F, ↓4G♭
20 320 ↑↑F, ↓3G♭ 6/5, 65/54, 77/64
21 336 3F, ↓↓G♭ 40/33, 63/52
22 352 4F, ↓G♭
23 368 5F, G♭ 26/21
24 384 6F, ↓7G 5/4, 56/45, 81/65
25 400 7F, ↓6G 49/39
26 416 F♯, ↓5G
27 432 ↑F♯, ↓4G 9/7, 32/25, 77/60
28 448 ↑↑F♯, ↓3G 35/27
29 464 3F♯, ↓↓G
30 480 4F♯, ↓G 33/25
31 496 G 4/3
32 512 ↑G, ↓4A♭ 35/26
33 528 ↑↑G, ↓3A♭ 65/48
34 544 3G, ↓↓A♭ 48/35
35 560 4G, ↓A♭ 18/13
36 576 5G, A♭ 39/28
37 592 6G, ↓7A 45/32
38 608 7G, ↓6A 64/45, 77/54
39 624 G♯, ↓5A 56/39
40 640 ↑G♯, ↓4A 13/9, 81/56
41 656 ↑↑G♯, ↓3A 35/24
42 672 3G♯, ↓↓A
43 688 4G♯, ↓A 52/35
44 704 A 3/2
45 720 ↑A, ↓4B♭ 50/33
46 736 ↑↑A, ↓3B♭
47 752 3A, ↓↓B♭ 54/35, 65/42, 77/50
48 768 4A, ↓B♭ 14/9, 25/16, 81/52
49 784 5A, B♭
50 800 6A, ↓7B 78/49
51 816 7A, ↓6B 8/5, 45/28, 77/48
52 832 A♯, ↓5B 21/13
53 848 ↑A♯, ↓4B
54 864 ↑↑A♯, ↓3B 33/20, 81/49
55 880 3A♯, ↓↓B 5/3
56 896 4A♯, ↓B
57 912 B 27/16
58 928 ↑B, ↓4C 12/7, 75/44, 77/45
59 944 ↑↑B, ↓3C 45/26
60 960 3B, ↓↓C
61 976 4B, ↓C 44/25
62 992 C 16/9
63 1008 ↑C, ↓4D♭ 70/39
64 1024 ↑↑C, ↓3D♭ 65/36
65 1040 3C, ↓↓D♭ 20/11, 64/35
66 1056 4C, ↓D♭ 24/13
67 1072 5C, D♭ 13/7
68 1088 6C, ↓7D 15/8
69 1104 7C, ↓6D
70 1120 C♯, ↓5D
71 1136 ↑C♯, ↓4D 27/14, 52/27, 77/40
72 1152 ↑↑C♯, ↓3D 35/18, 64/33
73 1168 3C♯, ↓↓D
74 1184 4C♯, ↓D
75 1200 D 2/1

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [119 -75 [75 119]] -0.645 0.645 4.03
2.3.5 20000/19683, 2109375/2097152 [75 119 174]] -0.099 0.936 5.85
2.3.5.7 225/224, 1728/1715, 15625/15309 [75 119 174 211]] -0.713 1.337 8.36

Music