Peppermint-24
Peppermint 24 is a scale first documented by Margo Schulter on the Yahoo tuning forum: M. Schulter (7/3/2002 3:51:43 AM)
Concept
Peppermint 24 aims to map superparticular and other ratios within Harry Partch's larger 17-limit set, to two conventional piano keyboards.
It takes as its basis a regular temperament mentioned in Ervin Wilson's Scale Tree and described on the Tuning List by Keenan Pepper, with a fifth of about 704.096 cents, and a precise ratio of Phi, the Golden Section (~1.618) between the larger chromatic semitone (e.g. C-C#) at about 128.669 cents and the smaller diatonic semitone (e.g. C#-D) at about 79.522 cents. Said fifth has a precise value of (67 + √5)/118 octaves, which is (40200 + 600 √5)/59 cents.
In Peppermint 24, two regular 12-note chains of this temperament are placed at a distance of approximately 58.680 cents, so as to yield some pure ratios of 6:7 (~266.871 cents).
Keyboard arrangement
Here is a 24-note keyboard arrangement, with an asterisk (*) showing a note on the upper keyboard:
187.349 346.393 683.253 891.445 1050.488 C#* Eb* F#* G#* Bb* C* D* E* F* G* A* B* C* 58.680 266.871 475.062 554.584 762.775 970.967 1179.158 1258.680 7/6 ------------------------------------------------------------------------- 128.669 287.713 624.574 832.765 991.809 C# Eb F# G# Bb C D E F G A B C 0 208.191 416.382 495.904 704.096 912.287 1120.478 1200
Intervals
Single chain
Offset two of these by 58.680 cents.
128.669 208.191 287.713 416.382 495.904 624.574 704.096 832.765 912.287 991.809 1120.478 1200.000
Combined (both chains)
58.680 128.669 187.349 208.191 266.871 287.713 346.393 416.382 475.062 495.904 554.584 624.574 683.253 704.096 762.775 832.765 891.445 912.287 970.967 991.809 1050.488 1120.478 1179.157 1200.000
Catalogue of ratio equivalents
What follows is a catalogue of some ratio equivalents and mappings no further from just than 8:9 or 9:16, which vary from their pure sizes by about 4.282 cents (twice the tempering of the fifth, at about 2.141 cents wide of 2:3).
Octave numbers appear in a MIDI-style notation, with C4 as middle C; just ratios and tempered equivalents are given values in cents, shown in parentheses, with tempered variations in cents also shown.
To describe the 58.68-cent interval between the two keyboards, whose addition or subtraction plays a role in obtaining or approximating many ratios, the term "quasi-diesis" or "QD" is used. This "artificial" diesis-like interval is actually somewhat larger than the natural diesis in the regular Wilson/Pepper temperament at about 49.15 cents (12 tempered fifths less 7 pure octaves).
Many ratios of 2-3-7-9-11-13 are represented quite accurately, with 14:17:21 and related ratios also closely approximated.
Multiplex (n:1) and superparticular (n+1:n) intervals
- 1:2 (1200) -- This is the usual octave (e.g. F3-F4), at a pure 1:2.
- 2:3 (701.96) -- This is the usual fifth (e.g. F3-C4, 704.10, +2.14).
- 3:4 (498.04) -- Usual fourth (e.g. C4-F4, 495.90, -2.14).
- 6:7 (266.87) -- Major second + QD (e.g. D4-E*4), at a pure 6:7.
- 7:8 (231.17) -- Minor third - QD (e.g. C*4-Eb4, 229.03, -2.14)
- 8:9 (203.91) -- Usual major second (e.g. C4-D4, 208.19, +4.28)
- 11:12 (150.64) -- Major second - QD (e.g. C*4-D4, 149.51, -1.13)
- 12:13 (138.57) -- Minor second + QD (e.g. E4-F*4, 138.20, -0.37)
- 13:14 (128.30) -- Usual apotome (e.g. C4-C#4, 128.67, +0.37)
- 17:18 (98.95) -- Diminished third - QD (e.g. G#*4-Bb4, 100.36, -1.41)
- 21:22 (80.54) -- Usual minor second (e.g. E4-F4, 79.52, -1.02)
- 24:25 (70.67) -- Apotome - QD (e.g. E*4-Eb4, 69.99, -0.68)
- 27:28 (62.96) -- QD (e.g. E4-E*4, 58.68, -4.28)
Other ratios
Many of these fall within the 17-odd-limit.
- 4:7 (968.83) -- Major sixth + QD (e.g. G3-E*4, 970.97, +2.14)
- 7:9 (435.08) -- Fourth - QD (e.g. G*4-C5, 437.22, +2.14)
- 7:12 (933.13) -- Minor seventh - QD (e.g. G*3-F4), at a pure 7:12.
- 9:14 (764.92) -- Fifth + QD (e.g. G4-D*5, 762.78, -2.14)
- 9:16 (996.09) -- Usual minor seventh (e.g. G4-F4, 991.81, -4.28)
- 6:11 (1049.36) -- Minor seventh + QD (e.g. G3-F*4, 1050.49, +1.13)
- 7:11 (782.49) -- Usual minor sixth (e.g. A3-F4, 783.62, +1.13)
- 8:11 (551.32) -- Fourth + QD (e.g. G3-C*4, 554.58, +3.27)
- 9:11 (347.41) -- Minor third + QD (e.g. G3-Bb*3, 346.39, -1.02)
- 8:13 (840.53) -- Minor sixth + QD (e.g. G3-Eb*3, 842.30, +1.77)
- 9:13 (636.62) -- Diminished fifth + QD (e.g. A3-Eb*4, 634.11, -2.51)
- 11:13 (289.21) -- Usual minor third (e.g. D3-F3, 287.71, -1.50)
- 11:14 (417.51) -- Usual major third (e.g. D3-F#3, 416.38, -1.13)
- 11:16 (648.68) -- Fifth - QD (e.g. F*3-C4, 645.42, -3.27)
- 11:18 (852.59) -- Major sixth - QD (e.g. G*4-E5, 853.61, +1.02)
- 11:21 (1119.46) -- Usual major seventh (e.g. F3-E4, 1120.48, +1.02)
- 12:17 (603.00) -- Augmented third + QD (e.g. Eb4-G#*4, 603.73, +0.73)
- 13:16 (359.47) -- Major third - QD (e.g. C*4-E4, 357.70, -1.77)
- 13:18 (563.38) -- Augmented fourth - QD (e.g. C*4-F#4, 565.89, +2.51)
- 13:21 (830.25) -- Usual augmented fifth (e.g. C4-G#4, 832.76, +2.51)
- 13:22 (910.79) -- Usual major sixth (e.g. G3-E4, 912.29, +1.50)
- 13:23 (987.75) -- Usual minor seventh (e.g. D4-C5, 991.81, +4.06)
- 13:24 (1061.43) -- Major seventh - QD (e.g. F*3-E4), 1061.80, +0.37)
- 14:17 (336.13) -- Usual augmented second (e.g. F4-G#4, 336.86, +0.73)
- 14:27 (1137.04) -- Octave - QD (e.g. F*4-F5, 1141.32, +4.28)
- 15:17 (216.69) -- Diminished third + QD (e.g. C#4-Eb*4, 217.72, +1.04)
- 16:21 (470.71) -- Major third + QD (e.g. C4-E*4, 475.06, +4.28)
- 16:23 (628.27) -- Usual augmented fourth (e.g. C4-F#4, 624.57, -3.70)
- 18:23 (424.36) -- Diminished fourth + QD (e.g. B4-Eb*5, 425.91, +1.55)
- 16:25 (772.63) -- Diminished fourth + QD (e.g. F#4-Bb*4, 774.09, +1.46)
- 17:20 (281.36) -- Augmented second - QD (e.g. F*4-G#4, 278.18, -3.18)
- 17:21 (365.83) -- Usual diminished fourth (e.g. F#4-Bb4, 367.24, +1.41)
- 17:28 (863.87) -- Usual diminished seventh (e.g. F#4-Eb4, 863.14, -0.73)
- 21:34 (834.17) -- Usual augmented fifth (e.g. F3-C#4, 832.76, +1.41)
- 28:51 (1038.08) -- Usual augmented sixth (e.g. Eb3-C#4, 1040.96, +2.87)
- 21:23 (157.49) -- Usual diminished third (e.g. C#4-Eb4, 159.04, +1.55)
- 21:26 (369.75) -- Usual diminished fourth (e.g. C#4-F4, 367.24, -1.51)
- 23:27 (277.59) -- Augmented second - QD (e.g. Eb*4-F#4, 278.18, +0.59)
- 26:33 (412.75) -- Usual major third (e.g. F4-A4, 416.38, +3.63)
- 28:33 (284.45) -- Usual minor third (e.g. E4-G4, 287.71, +3.27)
- 33:56 (915.55) -- Usual major sixth (e.g. G4-E5, 912.29, -3.27)
Subsets
C Major
- 208.191
- 416.382
- 495.904
- 704.096
- 912.287
- 1120.478
- 1200.000
Salt and pepper scale and its subsets
Salt and pepper[idiosyncratic term]
A 12-tone subset of Peppermint-24 designed by Budjarn Lambeth to concentrate the most frequently used intervals on just one keyboard.
- 128.669
- 187.349
- 208.191
- 266.871
- 287.713
- 495.904
- 704.096
- 832.765
- 891.445
- 970.967
- 1050.488
- 1200.000
Evacuated planet[idiosyncratic term] (approximated from 66afdo)
- 128.669
- 495.904
- 704.096
- 1050.488
- 1200.000
Flattened pseudo-equiheptatonic
- 128.669
- 266.871
- 495.904
- 704.096
- 832.765
- 1050.488
- 1200.000
Geode[idiosyncratic term] (approximated from 6afdo)
- 266.871
- 495.904
- 704.096
- 1050.488
- 1200.000
Minor hexatonic (approximated from 12edo)
- 187.349
- 287.713
- 495.904
- 704.096
- 970.967
- 1200.000
Pepperbass[idiosyncratic term] (original/default tuning)
(works well with jungle- or trap-style sub bass)
- 208.191
- 704.096
- 891.445
- 1050.488
- 1200.000
Pseudo-6afdo
- 266.871
- 495.904
- 704.096
- 891.445
- 1050.488
- 1200.000
Pseudo-akebono I (approximated from 12edo)
- 208.191
- 287.713
- 704.096
- 891.445
- 1200.000
Pseudo-akebono II (approximated from 12edo)
- 128.669
- 495.904
- 704.096
- 832.765
- 1200.000
Pseudo-equipentatonic
- 266.871
- 495.904
- 704.096
- 970.967
- 1200.000
Pseudo-hirajoshi (approximated from 12edo)
- 208.191
- 287.713
- 704.096
- 832.765
- 1200.000
Sharpened pseudo-pelog
- 128.669
- 287.713
- 704.096
- 832.765
- 1200.000
Ketchup and mustard scale and its subsets
Ketchup and mustard[idiosyncratic term]
A 12-tone subset of Peppermint-24 designed by Budjarn Lambeth to map intervals which sound nice with an inharmonic gamelan-like timbre to a 12-key keyboard (e.g. this timbre in Scale Workshop).
- 58.680
- 128.669
- 187.349
- 266.871
- 475.062
- 683.253
- 762.775
- 832.765
- 912.287
- 970.967
- 1050.488
- 1200.000
Inharmonic geode[idiosyncratic term]
- 266.871
- 475.062
- 683.253
- 1050.488
- 1200.000
Inharmonic minor hexatonic
- 187.349
- 266.871
- 475.062
- 683.253
- 970.967
- 1200.000
Inharmonic pepperbass[idiosyncratic term]
- 187.349
- 683.253
- 762.775
- 1050.488
- 1200.000
Inharmonic pseudo-6afdo
- 266.871
- 475.062
- 683.253
- 832.765
- 1050.488
- 1200.000
Inharmonic pseudo-akebono I
- 187.349
- 266.871
- 683.253
- 912.287
- 1200.000
Inharmonic pseudo-akebono II
- 58.680
- 475.062
- 683.253
- 762.775
- 1200.000
Inharmonic pseudo-equipentatonic
- 266.871
- 475.062
- 704.096
- 970.967
- 1200.000
Inharmonic pseudo-hirajoshi
- 187.349
- 266.871
- 683.253
- 832.765
- 1200.000
Unsharpened pseudo-pelog
- 128.669
- 266.871
- 683.253
- 762.775
- 1200.000
Miscellaneous
Undecimal picardy hexatonic[idiosyncratic term] (original/default tuning)
- 58.680
- 266.871
- 346.393
- 704.096
- 970.967
- 1200.000
Unflattened pseudo-equiheptatonic
- 187.349
- 346.393
- 495.904
- 704.096
- 832.765
- 1050.488
- 1200.000
Instruments
Lumatone
- File:Peppermint-C62.ltn & File:MillerPeppermintLumatone.jpeg — Herman Miller's Lumatone mapping for peppermint-24.
Music
Modern Renderings
- Mozart's Gigue KV 574, Arranged for Fortepiano (PEPPERMINT) (rendered in the 12 note subset by Claudi Meneghin, 2025)
- 2025-05-24 CHACONNE «LES REGRETS» - PEPPERMINT (rendered in a 46EDO-related subset by Claudi Meneghin, 2025)