17-odd-limit

From Xenharmonic Wiki
Jump to navigation Jump to search

The 17-odd-limit is the set of all rational intervals for which neither the numerator nor the denominator of the frequency ratio exceeds 17, once all powers of 2 are removed. To the 15-odd-limit, it adds 8 interval pairs involving 17.

Below is a list of all octave-reduced intervals in the 17-odd-limit.

Ratio Size (¢) Color name Name
18/17 98.955 17u1 su unison small septendecimal semitone
17/16 104.955 17o2 iso 2nd large septendecimal semitone
17/15 216.687 17og3 sogu 3rd septendecimal whole tone
20/17 281.358 17uy2 suyo 2nd septendecimal minor third
17/14 336.130 17or3 soru 3rd septendecimal supraminor third
22/17 446.363 17u1o3 sulo 3rd septendecimal supermajor third
17/13 464.428 17o3u4 sothu 4th septendecimal sub-fourth
24/17 597.000 17u4 su 4th lesser septendecimal tritone
17/12 603.000 17o5 iso 5th greater septendecimal tritone
26/17 735.572 17u3o5 sutho 5th septendecimal super-fifth
17/11 753.637 17o1u6 solu 6th septendecimal subminor sixth
28/17 863.870 17uz6 suzo 6th septendecimal submajor sixth
17/10 918.642 17og7 sogu 7th septendecimal major sixth
30/17 983.313 17uy6 suyo 6th septendecimal minor seventh
32/17 1095.045 17u7 su 7th small septendecimal major seventh
17/9 1101.045 17o8 iso octave large septendecimal major seventh

The smallest equal division of the octave which is consistent in the 17-odd-limit is 58edo; that which is distinctly consistent in the same is 149edo.

See also