17-odd-limit
Jump to navigation
Jump to search
The 17-odd-limit is the set of all rational intervals for which neither the numerator nor the denominator of the frequency ratio exceeds 17, once all powers of 2 are removed. To the 15-odd-limit, it adds 8 interval pairs involving 17.
Below is a list of all octave-reduced intervals in the 17-odd-limit.
- 1/1
- 18/17, 17/9
- 17/16, 32/17
- 16/15, 15/8
- 15/14, 28/15
- 14/13, 13/7
- 13/12, 24/13
- 12/11, 11/6
- 11/10, 20/11
- 10/9, 9/5
- 9/8, 16/9
- 17/15, 30/17
- 8/7, 7/4
- 15/13, 26/15
- 7/6, 12/7
- 20/17, 17/10
- 13/11, 22/13
- 6/5, 5/3
- 17/14, 28/17
- 11/9, 18/11
- 16/13, 13/8
- 5/4, 8/5
- 14/11, 11/7
- 9/7, 14/9
- 22/17, 17/11
- 13/10, 20/13
- 17/13, 26/17
- 4/3, 3/2
- 15/11, 22/15
- 11/8, 16/11
- 18/13, 13/9
- 7/5, 10/7
- 24/17, 17/12
Ratio | Size (¢) | Color name | Name | |
---|---|---|---|---|
18/17 | 98.955 | 17u1 | su unison | small septendecimal semitone |
17/16 | 104.955 | 17o2 | iso 2nd | large septendecimal semitone |
17/15 | 216.687 | 17og3 | sogu 3rd | septendecimal whole tone |
20/17 | 281.358 | 17uy2 | suyo 2nd | septendecimal minor third |
17/14 | 336.130 | 17or3 | soru 3rd | septendecimal supraminor third |
22/17 | 446.363 | 17u1o3 | sulo 3rd | septendecimal supermajor third |
17/13 | 464.428 | 17o3u4 | sothu 4th | septendecimal sub-fourth |
24/17 | 597.000 | 17u4 | su 4th | lesser septendecimal tritone |
17/12 | 603.000 | 17o5 | iso 5th | greater septendecimal tritone |
26/17 | 735.572 | 17u3o5 | sutho 5th | septendecimal super-fifth |
17/11 | 753.637 | 17o1u6 | solu 6th | septendecimal subminor sixth |
28/17 | 863.870 | 17uz6 | suzo 6th | septendecimal submajor sixth |
17/10 | 918.642 | 17og7 | sogu 7th | septendecimal major sixth |
30/17 | 983.313 | 17uy6 | suyo 6th | septendecimal minor seventh |
32/17 | 1095.045 | 17u7 | su 7th | small septendecimal major seventh |
17/9 | 1101.045 | 17o8 | iso octave | large septendecimal major seventh |
The smallest equal division of the octave which is consistent in the 17-odd-limit is 58edo; that which is distinctly consistent in the same is 149edo.