Archytas clan
The archytas clan (or archy family) tempers out the Archytas' comma, 64/63. This means that four stacked 3/2 fifths equal a 9/7 major third. (Note the similarity in function to 81/80 in meantone, where four stacked 3/2 fifths equal a 5/4 major third.) This leads to tunings with 3's and 7's quite sharp, such as those of 22edo.
Archy
- Main article: Superpyth
Subgroup: 2.3.7
Comma list: 64/63
Sval mapping: [⟨1 0 6], ⟨0 1 -2]]
- sval mapping generators: ~2, ~3
Gencom mapping: [⟨1 1 0 4], ⟨0 1 0 -2]]
- gencom: [2 3/2; 64/63]
Optimal tuning (POTE): ~3/2 = 709.321
Optimal ET sequence: 2, 3, 5, 12, 17, 22, 137bdd, 159bddd, 181bbddd
Scales: archy5, archy7, archy12
Overview to extensions
Adding 245/243 to the list of commas gives superpyth; 2430/2401 gives quasisuper; 36/35 gives dominant; 360/343 gives schism; 16/15 gives mother. These all use the same generators as archy.
50/49 gives pajara with a semioctave period. 126/125 gives augene with a 1/3-octave period. 28/27 gives blacksmith with a 1/5-octave period. 686/675 gives beatles, splitting the fifth in two. 250/243 gives porcupine, splitting the fourth in three. 4375/4374 gives modus, splitting the fifth in four. 3125/3087 gives passion, splitting the fourth in five.
Discussed under their respective 5-limit families are:
- Mother → Father family
- Dominant → Meantone family
- Augene → Augmented
- Porcupine → Porcupine family
- Pajara → Diaschismic family
- Blacksmith → Limmic temperaments
- Catalan → Kleismic family
- Modus → Tetracot family
- Passion → Passion family
- Immunized → Immunity family
- Suhajira → Neutral clan
- Brightstone → Magic family
The rest are considered below.
Supra
Subgroup: 2.3.7.11
Comma list: 64/63, 99/98
Sval mapping: [⟨1 0 6 13], ⟨0 1 -2 -6]]
Gencom mapping: [⟨1 1 0 4 7], ⟨0 1 0 -2 -6]]
- gencom: [2 3/2; 64/63 99/98]
Optimal tuning (POTE): ~3/2 = 707.192
Optimal ET sequence: 5, 12, 17, 39d, 56d
Supraphon
Subgroup: 2.3.7.11.13
Comma list: 64/63, 78/77, 99/98
Sval mapping: [⟨1 0 6 13 18], ⟨0 1 -2 -6 -9]]
Gencom mapping: [⟨1 1 0 4 7 9], ⟨0 1 0 -2 -6 -9]]
- gencom: [2 3/2; 64/63 78/77 99/98]
Optimal tuning (POTE): ~3/2 = 706.137
Superpyth
- Main article: Superpyth
In the 5-limit, superpyth tempers out 20480/19683. This temperament has a fifth generator of ~3/2 = ~710¢ and ~5/4 is found at +9 generator steps, as an augmented second (C-D#). It also has a weak extension, bipyth (10cd & 22), tempering out the same 5-limit comma as the superpyth, but with a half-octave period and the jubilisma (50/49) rather than the Archytas comma tempered out.
Subgroup: 2.3.5
Comma list: 20480/19683
Mapping: [⟨1 0 -12], ⟨0 1 9]]
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 710.078
Optimal ET sequence: 5, 17, 22, 49, 120b, 169bbc
Badness: 0.135141
7-limit
Subgroup: 2.3.5.7
Comma list: 64/63, 245/243
Mapping: [⟨1 0 -12 6], ⟨0 1 9 -2]]
Wedgie: ⟨⟨1 9 -2 12 -6 -30]]
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 710.291
Optimal ET sequence: 5, 17, 22, 27, 49
Badness: 0.032318
11-limit
The canonical extension to the 13-limit finds the ~11/8 at +16 generator steps, as a double augmented second (C-Dx) and finds the ~13/8 at +13 generator steps, as a double augmented fourth (C-Fx).
Subgroup: 2.3.5.7.11
Comma list: 64/63, 100/99, 245/243
Mapping: [⟨1 0 -12 6 -22], ⟨0 1 9 -2 16]]
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 710.175
Optimal ET sequence: 22, 27e, 49
Badness: 0.024976
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 64/63, 78/77, 91/90, 100/99
Mapping: [⟨1 0 -12 6 -22 -17], ⟨0 1 9 -2 16 13]]
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 710.479
Optimal ET sequence: 22, 27e, 49, 76bcde
Badness: 0.024673
Thomas
Subgroup: 2.3.5.7.11.13
Comma list: 64/63, 100/99, 169/168, 245/243
Mapping: [⟨1 1 -3 4 -6 4], ⟨0 2 18 -4 32 -1]]
Optimal tuning (POTE): ~2 = 1\1, ~16/13 = 355.036
Optimal ET sequence: 17e, 27e, 44, 71d
Badness: 0.049183
Suprapyth
Suprapyth finds the ~11/8 at the diminished fifth (C-Gb), and finds the ~13/8 at the diminished seventh (C-Bbb).
Subgroup: 2.3.5.7.11
Comma list: 55/54, 64/63, 99/98
Mapping: [⟨1 0 -12 6 13], ⟨0 1 9 -2 -6]]
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 709.495
Optimal ET sequence: 5, 12c, 17, 22
Badness: 0.032768
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 64/63, 65/63, 99/98
Mapping: [⟨1 0 -12 6 13 18], ⟨0 1 9 -2 -6 -9]]
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 708.703
Optimal ET sequence: 17, 22, 83cdf
Badness: 0.036336
Quasisuper
Quasisuper can be described as 17c & 22, with the ~5/4 mapped to -13 generator steps, as a double diminished fifth (C-Gbb).
Subgroup: 2.3.5.7
Comma list: 64/63, 2430/2401
Mapping: [⟨1 0 23 6], ⟨0 1 -13 -2]]
Wedgie: ⟨⟨1 -13 -2 -23 -6 32]]
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 708.328
Optimal ET sequence: 17c, 22, 61d
Badness: 0.063794
Quasisupra
Quasisupra can be viewed as an extension of the excellent 2.3.7.11 temperament supra, with the quasisuper mapping of 5 thrown in, rather than the superpyth mapping of 5 (which results in suprapyth).
Subgroup: 2.3.5.7.11
Comma list: 64/63, 99/98, 121/120
Mapping: [⟨1 0 23 6 13], ⟨0 1 -13 -2 -6]]
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 708.205
Optimal ET sequence: 17c, 22, 39d, 61d
Badness: 0.032203
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 64/63, 78/77, 91/90, 121/120
Mapping: [⟨1 0 23 6 13 18], ⟨0 1 -13 -2 -6 -9]]
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 708.004
Optimal ET sequence: 17c, 22, 39d, 61df, 100bcdf
Badness: 0.030219
Quasisoup
Subgroup: 2.3.5.7.11
Comma list: 55/54, 64/63, 2430/2401
Mapping: [⟨1 0 23 6 -22], ⟨0 1 -13 -2 16]]
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 709.021
Optimal ET sequence: 5ce, 17ce, 22
Badness: 0.083490
Ultrapyth
Ultrapyth can be viewed as an extension of the excellent 2.3.7.13/5 oceanfront temperament, mapping the ~5/4 to +14 fifths as a double augmented unison (C-Cx).
Subgroup: 2.3.5.7
Comma list: 64/63, 6860/6561
Mapping: [⟨1 0 -20 6], ⟨0 1 14 -2]]
Wedgie: ⟨⟨1 14 -2 20 -6 -44]]
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 713.651
Optimal ET sequence: 5, 32, 37
Badness: 0.108466
11-limit
Subgroup: 2.3.5.7.11
Comma list: 55/54, 64/63, 2401/2376
Mapping: [⟨1 0 -20 6 21], ⟨0 1 14 -2 -11]]
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 713.395
Optimal ET sequence: 5, 32, 37
Badness: 0.068238
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 64/63, 91/90, 1573/1568
Mapping: [⟨1 0 -20 6 21 -25], ⟨0 1 14 -2 -11 18]]
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 713.500
Optimal ET sequence: 5, 32, 37
Badness: 0.049172
Ultramarine
Subgroup: 2.3.5.7.11
Comma list: 64/63, 100/99, 3773/3645
Mapping: [⟨1 0 -20 6 -38], ⟨0 1 14 -2 26]]
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 713.791
Optimal ET sequence: 5e, 32e, 37, 79bce, 116bbce
Badness: 0.078068
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 64/63, 91/90, 100/99, 847/845
Mapping: [⟨1 0 -20 6 -38 -25], ⟨0 1 14 -2 26 18]]
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 713.811
Optimal ET sequence: 5e, 32e, 37, 79bcef, 116bbcef
Badness: 0.045653
Schism
- See also: Schismatic family #Schism
Schism tempers out the schisma, mapping the ~5/4 to -8 fifths as a diminished fourth (C-Fb) as does any schismic temperament.
Subgroup: 2.3.5.7
Comma list: 64/63, 360/343
Mapping: [⟨1 0 15 6], ⟨0 1 -8 -2]]
Wedgie: ⟨⟨1 -8 -2 -15 -6 18]]
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 701.556
Optimal ET sequence: 12, 41d, 53d
Badness: 0.056648
11-limit
Subgroup: 2.3.5.7.11
Comma list: 45/44, 64/63, 99/98
Mapping: [⟨1 0 15 6 13], ⟨0 1 -8 -2 -6]]
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 702.136
Optimal ET sequence: 12, 29de, 41de
Badness: 0.037482
Beatles
- For the 5-limit version of this temperament, see High badness temperaments #Beatles.
Subgroup: 2.3.5.7
Comma list: 64/63, 686/675
Mapping: [⟨1 1 5 4], ⟨0 2 -9 -4]]
Wedgie: ⟨⟨2 -9 -4 -19 -12 16]]
Optimal tuning (POTE): ~2 = 1\1, ~49/40 = 355.904
Optimal ET sequence: 10, 17c, 27, 64b, 91bcd, 118bcd
Badness: 0.045872
- Music
11-limit
Subgroup: 2.3.5.7.11
Comma list: 64/63, 100/99, 686/675
Mapping: [⟨1 1 5 4 10], ⟨0 2 -9 -4 -22]]
Optimal tuning (POTE): ~2 = 1\1, ~49/40 = 356.140
Optimal ET sequence: 27e, 37, 64be, 91bcde
Badness: 0.045639
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 64/63, 91/90, 100/99, 169/168
Mapping: [⟨1 1 5 4 10 4], ⟨0 2 -9 -4 -22 -1]]
Optimal tuning (POTE): ~2 = 1\1, ~16/13 = 356.229
Optimal ET sequence: 27e, 37, 64be
Badness: 0.030161
Ringo
Subgroup: 2.3.5.7.11
Comma list: 56/55, 64/63, 540/539
Mapping: [⟨1 1 5 4 2], ⟨0 2 -9 -4 5]]
Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 355.419
Optimal ET sequence: 10, 17c, 27e
Badness: 0.032863
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 56/55, 64/63, 78/77, 91/90
Mapping: [⟨1 1 5 4 2 4], ⟨0 2 -9 -4 5 -1]]
Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 355.456
Optimal ET sequence: 10, 17c, 27e
Badness: 0.022619
Beetle
Subgroup: 2.3.5.7.11
Comma list: 55/54, 64/63, 686/675
Mapping: [⟨1 1 5 4 -1], ⟨0 2 -9 -4 15]]
Optimal tuning (POTE): ~2 = 1\1, ~49/40 = 356.710
Optimal ET sequence: 10, 27, 37
Badness: 0.058084
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 64/63, 91/90, 169/168
Mapping: [⟨1 1 5 4 -1 4], ⟨0 2 -9 -4 15 -1]]
Optimal tuning (POTE): ~2 = 1\1, ~16/13 = 356.701
Optimal ET sequence: 10, 27, 37
Badness: 0.033971
Fervor
- For the 5-limit version of this temperament, see High badness temperaments #Fervor.
Subgroup: 2.3.5.7
Comma list: 64/63, 9604/9375
Mapping: [⟨1 4 -2 -2], ⟨0 -5 9 10]]
Wedgie: ⟨⟨5 -9 -10 -26 -30 2]]
Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 577.776
Optimal ET sequence: 2, 25, 27
Badness: 0.108455
11-limit
Subgroup: 2.3.5.7.11
Comma list: 56/55, 64/63, 1350/1331
Mapping: [⟨1 4 -2 -2 3], ⟨0 -5 9 10 1]]
Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 577.850
Optimal ET sequence: 2, 25e, 27e
Badness: 0.052054
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 56/55, 64/63, 78/77, 507/500
Mapping: [⟨1 4 -2 -2 3 -4], ⟨0 -5 9 10 1 16]]
Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 578.060
Optimal ET sequence: 2f, 25ef, 27e
Badness: 0.039705
Progress
- For the 5-limit version of this temperament, see High badness temperaments #Progress.
Subgroup: 2.3.5.7
Comma list: 64/63, 392/375
Mapping: [⟨1 0 5 6], ⟨0 3 -5 -6]]
Wedgie: ⟨⟨3 -5 -6 -15 -18 0]]
Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 562.122
Optimal ET sequence: 2, 13, 15, 32c, 79bcc, 111bcc
Badness: 0.066400
11-limit
Subgroup: 2.3.5.7.11
Comma list: 56/55, 64/63, 77/75
Mapping: [⟨1 0 5 6 4], ⟨0 3 -5 -6 -1]]
Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 562.085
Optimal ET sequence: 2, 13, 15, 32c, 47bc, 79bcce
Badness: 0.031036
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 56/55, 64/63, 66/65, 77/75
Mapping: [⟨1 0 5 6 4 0], ⟨0 3 -5 -6 -1 7]]
Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 562.365
Optimal ET sequence: 15, 17c, 32cf
Badness: 0.026214
Progressive
Subgroup: 2.3.5.7.11.13
Comma list: 26/25, 56/55, 64/63, 77/75
Mapping: [⟨1 0 5 6 4 9], ⟨0 3 -5 -6 -1 -10]]
Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 563.239
Optimal ET sequence: 15f, 17c, 32c, 49c
Badness: 0.032721
Sixix
- See also: Dual-fifth temperaments #Dual-3 Sixix
Subgroup: 2.3.5
Comma list: 3125/2916
Mapping: [⟨1 3 4], ⟨0 -5 -6]]
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 338.365
Optimal ET sequence: 7, 25, 32
Badness: 0.153088
7-limit
Subgroup: 2.3.5.7
Comma list: 64/63, 3125/2916
Mapping: [⟨1 3 4 0], ⟨0 -5 -6 10]]
Wedgie: ⟨⟨5 6 -10 -2 -30 -40]]
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 337.442
Optimal ET sequence: 7, 25, 32
Badness: 0.158903