Archytas clan

From Xenharmonic Wiki
(Redirected from Passion)
Jump to navigation Jump to search

The archytas clan (or archy family) tempers out the Archytas comma, 64/63. This means that four stacked 3/2 fifths equal a 9/7 major third. (Note the similarity in function to 81/80 in meantone, where four stacked 3/2 fifths equal a 5/4 major third.) This leads to tunings with 3s and 7s quite sharp, such as those of 22EDO.

Adding 50/49 to the list of commas gives pajara, 36/35 gives dominant, 16/15 gives mother, 126/125 gives augene, 28/27 gives blacksmith, 245/243 gives superpyth, 250/243 gives porcupine, 686/675 gives beatles, 360/343 gives schism, 3125/3087 gives passion, 2430/2401 gives quasisuper, and 4375/4374 gives modus.

Discussed under their respective 5-limit families are:

The rest are considered below.

Archy

Subgroup: 2.3.7

Comma list: 64/63

Sval mapping: [1 0 6], 0 1 -2]]

Sval mapping generators: ~2, ~3

Gencom mapping: [1 1 0 4], 0 1 0 -2]]

Gencom: [2 3/2; 64/63]

POTE generator: ~3/2 = 709.321

Vals2, 3, 5, 12, 17, 22

Scales: archy5, archy7, archy12

Supra

Subgroup: 2.3.7.11

Comma list: 64/63, 99/98

Sval mapping: [1 0 6 13], 0 1 -2 -6]]

Sval mapping generators: ~2, ~3

Gencom mapping: [1 1 0 4 7], 0 1 0 -2 -6]]

Gencom: [2 3/2; 64/63 99/98]

POTE generator: ~3/2 = 707.192

Vals: 5, 12, 17, 39d, 56d

Scales: supra7, supra12

Supraphon

Subgroup: 2.3.7.11.13

Comma list: 64/63, 78/77, 99/98

Sval mapping: [1 0 6 13 18], 0 1 -2 -6 -9]]

Sval mapping generators: ~2, ~3

Gencom mapping: [1 1 0 4 7 9], 0 1 0 -2 -6 -9]]

Gencom: [2 3/2; 64/63 78/77 99/98]

POTE generator: ~3/2 = 706.137

Vals: 12f, 17

Scales: supra7, supra12

Suhajira

Subgroup: 2.3.7.11

Comma list: 64/63, 243/242

Sval mapping: [1 1 4 2], 0 2 -4 5]]

Sval mapping generators: ~2, ~11/9

Gencom mapping: [1 1 0 4 2], 0 1 0 -4 5]]

Gencom: [2 3/2; 64/63 99/98]

POTE generator: ~11/9 = 353.958

Vals: 7, 10, 17, 44e, 61de

Scales: suhajira7, suhajira10, suhajira17

2.3.7.11.13

Subgroup: 2.3.7.11.13

Comma list: 64/63, 78/77, 144/143

Sval mapping: [1 1 4 2 4], 0 2 -4 5 -1]]

Sval mapping generators: ~2, ~11/9

Gencom mapping: [1 1 0 4 2 4], 0 1 0 -4 5 -1]]

Gencom: [2 3/2; 64/63 78/77 99/98]

POTE generator: ~11/9 = 353.775

Vals: 7, 10, 17, 44e, 61de

Scales: suhajira7, suhajira10, suhajira17

Superpyth

Main article: Superpyth

Subgroup: 2.3.5.7

Comma list: 64/63, 245/243

Mapping: [1 0 -12 6], 0 1 9 -2]]

Wedgie⟨⟨1 9 -2 12 -6 -30]]

POTE generator: ~3/2 = 710.291

Vals5, 17, 22, 27, 49

Badness: 0.032318

11-limit

Subgroup: 2.3.5.7.11

Comma list: 64/63, 100/99, 245/243

Mapping: [1 0 -12 6 -22], 0 1 9 -2 16]]

POTE generator: ~3/2 = 710.175

Vals: 22, 27e, 49

Badness: 0.024976

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 64/63, 78/77, 91/90, 100/99

Mapping: [1 0 -12 6 -22 -17], 0 1 9 -2 16 13]]

POTE generator: ~3/2 = 710.479

Vals: 22, 27e, 49, 76bcde

Badness: 0.024673

Suprapyth

Subgroup: 2.3.5.7.11

Comma list: 55/54, 64/63, 99/98

Mapping: [1 0 -12 6 13], 0 1 9 -2 -6]]

POTE generator: ~3/2 = 709.495

Vals: 5, 12c, 17, 22

Badness: 0.032768

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 55/54, 64/63, 65/63, 99/98

Mapping: [1 0 -12 6 13 18], 0 1 9 -2 -6 -9]]

POTE generator: ~3/2 = 708.703

Vals: 17, 22, 83cdf

Badness: 0.036336

Quasisuper

Subgroup: 2.3.5.7

Comma list: 64/63, 2430/2401

Mapping: [1 0 23 6], 0 1 -13 -2]]

Wedgie⟨⟨1 -13 -2 -23 -6 32]]

POTE generator: ~3/2 = 708.328

Vals17c, 22, 61d

Badness: 0.063794

Quasisupra

Quasisupra can be viewed as an extension of the excellent 2.3.7.11 temperament supra, with the quasisuper mapping of 5 thrown in, rather than the superpyth mapping of 5 (which results in suprapyth).

Subgroup: 2.3.5.7.11

Comma list: 64/63, 99/98, 121/120

Mapping: [1 0 23 6 13], 0 1 -13 -2 -6]]

POTE generator: ~3/2 = 708.205

Vals: 17c, 22, 39d, 61d

Badness: 0.032203

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 64/63, 78/77, 91/90, 121/120

Mapping: [1 0 23 6 13 18], 0 1 -13 -2 -6 -9]]

POTE generator: ~3/2 = 708.004

Vals: 17c, 22, 39d, 61df, 100bcdf

Badness: 0.030219

Quasisoup

Subgroup: 2.3.5.7.11

Comma list: 55/54, 64/63, 2430/2401

Mapping: [1 0 23 6 -22], 0 1 -13 -2 16]]

POTE generator: ~3/2 = 709.021

Vals: 5ce, 17ce, 22

Badness: 0.083490

Ultrapyth

Ultrapyth can be viewed as an extension of the excellent 2.3.7.13/5 oceanfront temperament, with mapping 5th harmonic to 14 fifths.

7-limit

Subgroup: 2.3.5.7

Comma list: 64/63, 6860/6561

Mapping: [1 0 -20 6], 0 1 14 -2]]

Wedgie⟨⟨1 14 -2 20 -6 -44]]

POTE generator: ~3/2 = 713.651

Vals5, 32, 37

Badness: 0.108466

2.3.5.7.13

Subgroup: 2.3.5.7.13

Comma list: 64/63, 91/90, 4394/4375

Mapping: [1 0 -20 6 -25], 0 1 14 -2 18]]

POTE generator: ~3/2 = 713.7453

Vals: 5, 32, 37, 79bc

Badness: 0.0547

11-limit

Subgroup: 2.3.5.7.11

Comma list: 55/54, 64/63, 2401/2376

Mapping: [1 0 -20 6 21], 0 1 14 -2 -11]]

POTE generator: ~3/2 = 713.395

Vals: 5, 32, 37

Badness: 0.068238

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 55/54, 64/63, 91/90, 1573/1568

Mapping: [1 0 -20 6 21 -25], 0 1 14 -2 -11 18]]

POTE generator: ~3/2 = 713.500

Vals: 5, 32, 37

Badness: 0.049172

Counterultrapyth

Subgroup: 2.3.5.7.11

Comma list: 64/63, 100/99, 3773/3645

Mapping: [1 0 -20 6 -38], 0 1 14 -2 26]]

POTE generator: ~3/2 = 713.791

Vals: 5e, 32e, 37, 79bce, 116bbce

Badness: 0.078068

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 64/63, 91/90, 100/99, 847/845

Mapping: [1 0 -20 6 -38 -25], 0 1 14 -2 26 18]]

POTE generator: ~3/2 = 713.811

Vals: 5e, 32e, 37, 79bcef, 116bbcef

Badness: 0.045653

Schism

See also: Schismatic family #Schism

Subgroup: 2.3.5.7

Comma list: 64/63, 360/343

Mapping: [1 0 15 6], 0 1 -8 -2]]

Wedgie⟨⟨1 -8 -2 -15 -6 18]]

POTE generator: ~3/2 = 701.556

Vals12, 41d, 53d

Badness: 0.056648

11-limit

Subgroup: 2.3.5.7.11

Comma list: 45/44, 64/63, 99/98

Mapping: [1 0 15 6 13], 0 1 -8 -2 -6]]

POTE generator: ~3/2 = 702.136

Vals: 12, 29de, 41de

Badness: 0.037482

Beatles

Subgroup: 2.3.5

Comma: 524288/492075

Mapping: [1 1 5], 0 2 -9]]

POTE generator: ~512/405 = 355.930

Vals10, 17c, 27, 64b, 91bc, 118bc

Badness: 0.358542

7-limit

Subgroup: 2.3.5.7

Comma list: 64/63, 686/675

Mapping: [1 1 5 4], 0 2 -9 -4]]

Wedgie⟨⟨2 -9 -4 -19 -12 16]]

POTE generator: ~49/40 = 355.904

Vals10, 17c, 27, 64b, 91bcd, 118bcd

Badness: 0.045872

Music

11-limit

Subgroup: 2.3.5.7.11

Comma list: 64/63, 100/99, 686/675

Mapping: [1 1 5 4 10], 0 2 -9 -4 -22]]

POTE generator: ~49/40 = 356.140

Vals: 27e, 37, 64be, 91bcde

Badness: 0.045639

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 64/63, 91/90, 100/99, 169/168

Mapping: [1 1 5 4 10 4], 0 2 -9 -4 -22 -1]]

POTE generator: ~16/13 = 356.229

Vals: 27e, 37, 64be

Badness: 0.030161

Ringo

Subgroup: 2.3.5.7.11

Comma list: 56/55, 64/63, 540/539

Mapping: [1 1 5 4 2], 0 2 -9 -4 5]]

POTE generator: ~11/9 = 355.419

Vals: 10, 17c, 27e

Badness: 0.032863

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 56/55, 64/63, 78/77, 91/90

Mapping: [1 1 5 4 2 4], 0 2 -9 -4 5 -1]]

POTE generator: ~11/9 = 355.456

Vals: 10, 17c, 27e

Badness: 0.022619

Beetle

Subgroup: 2.3.5.7.11

Comma list: 55/54, 64/63, 686/675

Mapping: [1 1 5 4 -1], 0 2 -9 -4 15]]

POTE generator: ~49/40 = 356.710

Vals: 10, 27, 37

Badness: 0.058084

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 55/54, 64/63, 91/90, 169/168

Mapping: [1 1 5 4 -1 4], 0 2 -9 -4 15 -1]]

POTE generator: ~16/13 = 356.701

Vals: 10, 27, 37

Badness: 0.033971

Fervor

Subgroup: 2.3.5

Comma: 67108864/61509375

Mapping: [1 4 -2], 0 -5 9]]

POTE generator: ~64/45 = 577.705

Vals2, 25, 27

Badness: 0.852612

7-limit

Subgroup: 2.3.5.7

Comma list: 64/63, 9604/9375

Mapping: [1 4 -2 -2], 0 -5 9 10]]

Wedgie⟨⟨5 -9 -10 -26 -30 2]]

POTE generator: ~7/5 = 577.776

Vals2, 25, 27

Badness: 0.108455

11-limit

Subgroup: 2.3.5.7.11

Comma list: 56/55, 64/63, 1350/1331

Mapping: [1 4 -2 -2 3], 0 -5 9 10 1]]

POTE generator: ~7/5 = 577.850

Vals: 2, 25e, 27e

Badness: 0.052054

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 56/55, 64/63, 78/77, 507/500

Mapping: [1 4 -2 -2 3 -4], 0 -5 9 10 1 16]]

POTE generator: ~7/5 = 578.060

Vals: 2f, 25ef, 27e

Badness: 0.039705

Progress

Subgroup: 2.3.5

Comma: 32768/30375

Mapping: [1 0 5], 0 3 -5]]

POTE generator: ~64/45 = 561.264

Vals2, 13, 15, 32c, 47bc, 62bc

Badness: 0.246073

7-limit

Subgroup: 2.3.5.7

Comma list: 64/63, 392/375

Mapping: [1 0 5 6], 0 3 -5 -6]]

Wedgie⟨⟨3 -5 -6 -15 -18 0]]

POTE generator: ~7/5 = 562.122

Vals2, 13, 15, 32c, 79bcc, 111bcc

Badness: 0.066400

11-limit

Subgroup: 2.3.5.7.11

Comma list: 56/55, 64/63, 77/75

Mapping: [1 0 5 6 4], 0 3 -5 -6 -1]]

POTE generator: ~7/5 = 562.085

Vals: 2, 13, 15, 32c, 47bc, 79bcce

Badness: 0.031036

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 56/55, 64/63, 66/65, 77/75

Mapping: [1 0 5 6 4 0], 0 3 -5 -6 -1 7]]

POTE generator: ~7/5 = 562.365

Vals: 15, 17c, 32cf

Badness: 0.026214

Progressive

Subgroup: 2.3.5.7.11.13

Comma list: 26/25, 56/55, 64/63, 77/75

Mapping: [1 0 5 6 4 9], 0 3 -5 -6 -1 -10]]

POTE generator: ~7/5 = 563.239

Vals: 15f, 17c, 32c, 49c

Badness: 0.032721

Sixix

See also: Dual-fifth temperaments#Dual-3 Sixix

Subgroup: 2.3.5

Comma: 3125/2916

Mapping: [1 3 4], 0 -5 -6]]

POTE generator: ~6/5 = 338.365

Vals7, 25, 32

Badness: 0.153088

7-limit

Subgroup: 2.3.5.7

Comma list: 64/63, 3125/2916

Mapping: [1 3 4 0], 0 -5 -6 10]]

Wedgie⟨⟨5 6 -10 -2 -30 -40]]

POTE generator: ~6/5 = 337.442

Vals7, 25, 32

Badness: 0.158903