231edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 230edo 231edo 232edo →
Prime factorization 3 × 7 × 11
Step size 5.19481¢ 
Fifth 135\231 (701.299¢) (→45\77)
Semitones (A1:m2) 21:18 (109.1¢ : 93.51¢)
Consistency limit 11
Distinct consistency limit 11

231 equal divisions of the octave (abbreviated 231edo or 231ed2), also called 231-tone equal temperament (231tet) or 231 equal temperament (231et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 231 equal parts of about 5.19 ¢ each. Each step represents a frequency ratio of 21/231, or the 231st root of 2.

Theory

In the 5-limit, 231et tempers out the kleisma, 15625/15552, and in the 7-limit 1029/1024, so that it supports the tritikleismic temperament, and in fact provides the optimal patent val. In the 11-limit it tempers out 385/384, 441/440 and 4000/3993, leading to 11-limit tritikleismic for which it also gives the optimal patent val.

231 years is the number of years in a 41 out of 231 leap week cycle, which corresponds to a 41 & 149 temperament tempering out 132055/131072, 166375/165888, and 2460375/2458624. This type of solar calendar leap rule scale may actually be of more use to harmony, since a 41 note subset mimics 41edo, a rather useful edo harmonically, and it preserves the simple commas mentioned above.

Odd harmonics

Approximation of odd harmonics in 231edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -0.66 -1.90 -2.59 -1.31 -0.67 +1.03 -2.55 -1.06 -1.41 +1.95 +0.30
Relative (%) -12.6 -36.5 -49.9 -25.3 -12.9 +19.8 -49.2 -20.4 -27.1 +37.5 +5.7
Steps
(reduced)
366
(135)
536
(74)
648
(186)
732
(39)
799
(106)
855
(162)
902
(209)
944
(20)
981
(57)
1015
(91)
1045
(121)

Subsets and supersets

231 = 3 × 7 × 11, with subset edos 3, 7, 11, 21, 33, and 77. Since it contains 77edo, it can be used for playing such a tuning of the Carlos Alpha scale.

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3.5 15625/15552, [-64 36 3 [231 366 536]] 0.410 0.334 6.43
2.3.5.7 1029/1024, 15625/15552, 823543/820125 [231 366 536 648]] 0.539 0.365 7.01
2.3.5.7.11 385/384, 441/440, 4000/3993, 823543/820125 [231 366 536 648 799]] 0.469 0.354 6.81

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
ratio*
Temperaments
1 26\231 135.06 27/25 Superlimmal
1 27\231 140.26 243/224 Septichrome
1 45\231 233.77 8/7 Slendric
1 61\231 316.88 6/5 Hanson
1 62\231 322.08 135/112 Dee leap week
1 73\231 379.22 56/45 Marthirds
3 61\231
(16\231)
316.88
(83.12)
6/5
(21/20)
Tritikleismic

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct

Music

Mercury Amalgam