Kleismic family
The 5-limit parent comma for the kleismic family is 15625/15552, the kleisma. Its monzo is [-6 -5 6⟩, and flipping that yields ⟨⟨ 6 5 -6 ]] for the wedgie. This tells us the generator is a classical minor third (6/5), and that to get to the interval class of major thirds will require five of these, and so to get to fifths will require six. In fact, (6/5)5 = 5/2 × 15625/15552. This 5-limit temperament (virtually a microtemperament) is commonly called hanson, and 14\53 is about perfect as a hanson generator, though 9\34 also makes sense, and 5\19 and 4\15 are possible. Other tunings include 72edo, 87edo and 140edo.
The second comma of the normal comma list defines which 7-limit family member we are looking at. 875/864, the keemic comma, gives keemun. 4375/4374, the ragisma, gives catakleismic. 5120/5103, hemifamity, gives countercata. 6144/6125, the porwell comma, gives hemikleismic. 245/243, sensamagic, gives clyde. 1029/1024, the gamelisma, gives tritikleismic. 2401/2400 the breedsma, gives quadritikleismic. Keemun, catakleismic and countercata all have octave period and use the minor third as a generator; catakleismic and countercata define the 7/4 more complexly but more accurately than keemun. Hemikleismic splits the 6/5 in half to get a neutral second generator of 35/32, and clyde similarly splits the 5/3 in half to get a 9/7 generator. Finally, tritikleismic has a 1/3-octave period with minor third generator, and quadritikleismic a 1/4-octave period with the minor third generator.
Hanson
Subgroup: 2.3.5
Comma list: 15625/15552
Mapping: [⟨1 0 1], ⟨0 6 5]]
- mapping generators: ~2, ~6/5
- CTE: ~2 = 1\1, ~6/5 = 317.0308
- POTE: ~2 = 1\1, ~6/5 = 317.007
- 5-odd-limit diamond monotone: ~6/5 = [300.000, 327.273] (1\4 to 3\11)
- 5-odd-limit diamond tradeoff: ~6/5 = [315.641, 317.263] (untempered to 1/5-comma)
Optimal ET sequence: 15, 19, 34, 53, 458, 511c, …, 882c
Badness: 0.013234
Cata
Hanson lends itself nicely to this extension in the 2.3.5.13 subgroup, as the hemitwelfth, reached by three generator steps, can be interpreted as 26/15. Notice 15625/15552 = (325/324)(625/624) and 325/324 = (625/624)(676/675). The S-expression-based comma list of the temperament is {S10/S12 = S25*S26, (S25,) S13/S15 = S26}. For the high-limit version of cata with a 1\5 period, see thunderclysmic.
Subgroup: 2.3.5.13
Comma list: 325/324, 625/624
Sval mapping: [⟨1 0 1 0], ⟨0 6 5 14]]
Optimal tunings:
- CTE: ~2 = 1\1, ~6/5 = 317.1110
- POTE: ~2 = 1\1, ~6/5 = 317.0756
Optimal ET sequence: 15, 19, 34, 53, 140, 193, 246
Badness: 0.394
Keemun
Subgroup: 2.3.5.7
Comma list: 49/48, 126/125
Mapping: [⟨1 0 1 2], ⟨0 6 5 3]]
Wedgie: ⟨⟨ 6 5 3 -6 -12 -7 ]]
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 316.473
- 7-odd-limit diamond monotone: ~6/5 = [300.000, 327.273] (1\4 to 3\11)
- 9-odd-limit diamond monotone: ~6/5 = [315.789, 320.000] (5\19 to 4\15)
- 7- and 9-odd-limit diamond tradeoff: ~6/5 = [308.744, 322.942]
Optimal ET sequence: 15, 19, 53d, 72dd, 91dd
Badness: 0.027408
11-limit
Subgroup: 2.3.5.7.11
Comma list: 49/48, 56/55, 100/99
Mapping: [⟨1 0 1 2 4], ⟨0 6 5 3 -2]]
Wedgie: ⟨⟨ 6 5 3 -2 -6 -12 -24 -7 -22 -16 ]]
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 317.576
Tuning ranges:
- 11-odd-limit diamond monotone: ~6/5 = [315.789, 320.000] (5\19 to 4\15)
- 11-odd-limit diamond tradeoff: ~6/5 = [308.744, 324.341]
Optimal ET sequence: 4, 15, 19, 34
Badness: 0.027410
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 49/48, 56/55, 65/64, 100/99
Mapping: [⟨1 0 1 2 4 5], ⟨0 6 5 3 -2 -5]]
Wedgie: ⟨⟨ 6 5 3 -2 -5 -6 -12 -24 -30 -7 -22 -30 -16 -25 -10 ]]
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 316.611
Tuning ranges:
- 13- and 15-odd-limit diamond monotone: ~6/5 = 315.789 (5\19)
- 13- and 15-odd-limit diamond tradeoff: ~6/5 = [303.597, 324.341]
Optimal ET sequence: 4, 15f, 19, 53def, 72def
Badness: 0.029749
Kema
Subgroup: 2.3.5.7.11.13
Comma list: 49/48, 56/55, 91/90, 100/99
Mapping: [⟨1 0 1 2 4 0], ⟨0 6 5 3 -2 14]]
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 317.423
Tuning ranges:
- 13-odd-limit diamond monotone: ~6/5 = [315.789, 320.000] (5\19 to 4\15)
- 15-odd-limit diamond monotone: ~6/5 = 315.789 (5\19)
- 13- and 15-odd-limit diamond tradeoff: ~6/5 = [308.744, 324.341]
Optimal ET sequence: 15, 19, 34, 87ddee
Badness: 0.022749
Kumbaya
Subgroup: 2.3.5.7.11.13
Comma list: 40/39, 49/48, 56/55, 66/65
Mapping: [⟨1 0 1 2 4 4], ⟨0 6 5 3 -2 -1]]
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 318.595
Optimal ET sequence: 4, 15, 19f, 34ff
Badness: 0.031633
Qeema
Subgroup: 2.3.5.7.11
Comma list: 45/44, 49/48, 126/125
Mapping: [⟨1 0 1 2 -1], ⟨0 6 5 3 17]]
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 314.730
Optimal ET sequence: 4e, 19, 42bcd, 61bcdd
Badness: 0.040056
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 45/44, 49/48, 78/77, 126/125
Mapping: [⟨1 0 1 2 -1 0], ⟨0 6 5 3 17 14]]
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 315.044
Badness: 0.029419
Darjeeling
Subgroup: 2.3.5.7.11
Comma list: 49/48, 55/54, 77/75
Mapping: [⟨1 0 1 2 0], ⟨0 6 5 3 13]]
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 317.656
Optimal ET sequence: 15, 19e, 34e
Badness: 0.027648
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 49/48, 55/54, 66/65, 77/75
Mapping: [⟨1 0 1 2 0 0], ⟨0 6 5 3 13 14]]
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 317.298
Optimal ET sequence: 15, 19e, 34e, 53dee
Badness: 0.021445
Catalan
Subgroup: 2.3.5.7
Comma list: 64/63, 15625/15552
Mapping: [⟨1 0 1 6], ⟨0 6 5 -12]]
Wedgie: ⟨⟨ 6 5 -12 -6 -36 -42 ]]
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 318.267
- 7- and 9-odd-limit diamond monotone: ~6/5 = [317.647, 320.000] (9\34 to 4\15)
- 7- and 9-odd-limit diamond tradeoff: ~6/5 = [315.641, 319.265]
Optimal ET sequence: 15, 34d, 49, 132bcdd, 181bbcddd
Badness: 0.094872
11-limit
Subgroup: 2.3.5.7.11
Comma list: 64/63, 100/99, 1331/1323
Mapping: [⟨1 0 1 6 4], ⟨0 6 5 -12 -2]]
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 318.282
Tuning ranges:
- 11-odd-limit diamond monotone: ~6/5 = [317.647, 320.000] (9\34 to 4\15)
- 11-odd-limit diamond tradeoff: ~6/5 = [315.641, 324.341]
Optimal ET sequence: 15, 34d, 49, 181bbcdddeee
Badness: 0.036894
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 64/63, 100/99, 144/143, 275/273
Mapping: [⟨1 0 1 6 4 0], ⟨0 6 5 -12 -2 14]]
Optimal tuning (CTE): ~2 = 1\1, ~6/5 = 317.9159
Optimal ET sequence: 15, 34d, 49f, 83def, 132bcddeefff
Badness: 0.0263
Catakleismic
7-limit
Subgroup: 2.3.5.7
Comma list: 225/224, 4375/4374
Mapping: [⟨1 0 1 -3], ⟨0 6 5 22]]
Wedgie: ⟨⟨ 6 5 22 -6 18 37 ]]
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 316.732
- 7- and 9-odd-limit diamond monotone: ~6/5 = [315.789, 317.647] (5\19 to 9\34)
- 7- and 9-odd-limit diamond tradeoff: ~6/5 = [315.641, 317.263]
Optimal ET sequence: 19, 34d, 53, 72, 197, 269c
Badness: 0.021501
2.3.5.7.13 subgroup
The S-expression-based comma list of this temperament is {S13, S15 = S25*S26*S27, S10/S12 = S25*S26(, S25, S26 = S13/S15, S27)}.
Subgroup: 2.3.5.7.13
Comma list: 169/168, 225/224, 325/324
Sval mapping: [⟨1 0 1 -3 0], ⟨0 6 5 22 14]]
Optimal tuning (CTE): ~2 = 1\1, ~6/5 = 316.8865
Optimal ET sequence: 19, 34d, 53, 72, 125f, 197f
Badness: 0.0118
11-limit
Subgroup: 2.3.5.7.11
Comma list: 225/224, 385/384, 4375/4374
Mapping: [⟨1 0 1 -3 9], ⟨0 6 5 22 -21]]
Wedgie: ⟨⟨ 6 5 22 -21 -6 18 -54 37 -66 -135 ]]
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 316.719
Tuning ranges:
- 11-odd-limit diamond monotone range: ~6/5 = [315.789, 316.981] (5\19 to 14\53)
- 11-odd-limit diamond tradeoff range: ~6/5 = [315.641, 317.263]
Optimal ET sequence: 19, 34de, 53, 72, 197e, 269ce, 341ce, 610bccee
Badness: 0.021849
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 169/168, 225/224, 325/324, 385/384
Mapping: [⟨1 0 1 -3 9 0], ⟨0 6 5 22 -21 14]]
Wedgie: ⟨⟨ 6 5 22 -21 14 -6 18 -54 0 37 -66 14 -135 -42 126 ]]
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 316.738
Tuning ranges:
- 13- and 15-odd-limit diamond monotone: ~6/5 = [315.789, 316.981] (5\19 to 14\53)
- 13- and 15-odd-limit diamond tradeoff: ~6/5 = [315.641, 318.309]
Optimal ET sequence: 19, 34de, 53, 72, 125f, 197ef, 269ceff
Badness: 0.016883
Cataclysmic
Subgroup: 2.3.5.7.11
Comma list: 99/98, 176/175, 2200/2187
Mapping: [⟨1 0 1 -3 -5], ⟨0 6 5 22 32]]
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 317.042
Optimal ET sequence: 19e, 34d, 53
Badness: 0.039954
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 99/98, 169/168, 176/175, 275/273
Mapping: [⟨1 0 1 -3 -5 0], ⟨0 6 5 22 32 14]]
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 317.036
Optimal ET sequence: 19e, 34d, 53
Badness: 0.022555
Catalytic
Subgroup: 2.3.5.7.11
Comma list: 225/224, 441/440, 4375/4374
Mapping: [⟨1 0 1 -3 -10], ⟨0 6 5 22 51]]
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 316.653
Optimal ET sequence: 19e, 53e, 72
Badness: 0.030422
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 169/168, 225/224, 325/324, 1716/1715
Mapping: [⟨1 0 1 -3 -10 0], ⟨0 6 5 22 51 14]]
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 316.639
Optimal ET sequence: 19e, 53e, 72
Badness: 0.022337
Cataleptic
Subgroup: 2.3.5.7.11
Comma list: 100/99, 225/224, 864/847
Mapping: [⟨1 0 1 -3 4], ⟨0 6 5 22 -2]]
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 317.083
Optimal ET sequence: 19, 34d, 53e
Badness: 0.044335
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 78/77, 100/99, 144/143, 676/675
Mapping: [⟨1 0 1 -3 4 0], ⟨0 6 5 22 -2 14]]
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 317.118
Optimal ET sequence: 19, 34d, 53e, 87dee
Badness: 0.027343
Bikleismic
Subgroup: 2.3.5.7.11
Comma list: 225/224, 243/242, 4375/4356
Mapping: [⟨2 0 2 -6 -1], ⟨0 6 5 22 15]]
- mapping generators: ~99/70, ~6/5
Optimal tuning (POTE): ~99/70 = 1\2, ~6/5 = 316.721
Optimal ET sequence: 34d, 72, 322c, …, 610bcc
Badness: 0.029319
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 169/168, 225/224, 243/242, 325/324
Mapping: [⟨2 0 2 -6 -1 0], ⟨0 6 5 22 15 14]]
Optimal tuning (POTE): ~55/39 = 1\2, ~6/5 = 316.726
Badness: 0.021814
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 169/168, 221/220, 225/224, 243/242, 325/324
Mapping: [⟨2 0 2 -6 -1 0 5], ⟨0 6 5 22 15 14 6]]
Optimal tuning (POTE): ~17/12 = 1\2, ~6/5 = 316.726
Optimal ET sequence: 34d, 38df, 72
Badness: 0.015656
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 153/152, 169/168, 221/220, 225/224, 243/242, 325/324
Mapping: [⟨2 0 2 -6 -1 0 5 -1], ⟨0 6 5 22 15 14 6 18]]
Optimal tuning (POTE): ~17/12 = 1\2, ~6/5 = 316.726
Optimal ET sequence: 34dh, 38df, 72
Badness: 0.015771
Countercata
Subgroup: 2.3.5.7
Comma list: 5120/5103, 15625/15552
Mapping: [⟨1 0 1 11], ⟨0 6 5 -31]]
Wedgie: ⟨⟨ 6 5 -31 -6 -66 -86 ]]
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 317.121
- 7- and 9-odd-limit diamond monotone: ~6/5 = [316.667, 317.647] (19\72 to 9\34)
- 7- and 9-odd-limit diamond tradeoff: ~6/5 = [315.641, 317.263]
Optimal ET sequence: 19d, 34, 53, 87, 140, 333, 473, 806b
Badness: 0.052129
11-limit
Subgroup: 2.3.5.7.11
Comma list: 385/384, 2200/2187, 3388/3375
Mapping: [⟨1 0 1 11 -5], ⟨0 6 5 -31 32]]
Wedgie: ⟨⟨ 6 5 -31 32 -6 -66 30 -86 57 197 ]]
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 317.162
Tuning ranges:
- 11-odd-limit diamond monotone: ~6/5 = [316.981, 317.647] (14\53 to 9\34)
- 11-odd-limit diamond tradeoff: ~6/5 = [315.641, 317.370]
Optimal ET sequence: 34, 53, 87, 140, 227, 367e, 507e
Badness: 0.039770
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 325/324, 352/351, 385/384, 625/624
Mapping: [⟨1 0 1 11 -5 0], ⟨0 6 5 -31 32 14]]
Wedgie: ⟨⟨ 6 5 -31 32 14 -6 -66 30 0 -86 57 14 197 154 -70 ]]
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 317.162
Tuning ranges:
- 13-odd-limit diamond monotone: ~6/5 = [316.981, 317.647] (14\53 to 9\34)
- 15-odd-limit diamond monotone: ~6/5 = [316.981, 317.241] (14\53 to 23\87)
- 13- and 15-odd-limit diamond tradeoff: ~6/5 = [315.641, 318.309]
Optimal ET sequence: 34, 53, 87, 140, 367e, 507e
Badness: 0.020156
Metakleismic
Subgroup: 2.3.5.7
Comma list: 15625/15552, 179200/177147
Mapping: [⟨1 0 1 -12], ⟨0 6 5 56]]
Wedgie: ⟨⟨ 6 5 56 -6 72 116 ]]
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 317.314
Optimal ET sequence: 34d, 87, 121, 208
Badness: 0.163519
11-limit
Subgroup: 2.3.5.7.11
Comma list: 896/891, 2200/2187, 14700/14641
Mapping: [⟨1 0 1 -12 -5], ⟨0 6 5 56 32]]
Wedgie: ⟨⟨ 6 5 56 32 -6 72 30 116 57 -104 ]]
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 317.311
Optimal ET sequence: 34d, 53d, 87, 121, 208
Badness: 0.048570
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 325/324, 352/351, 364/363, 625/624
Mapping: [⟨1 0 1 -12 -5 0], ⟨0 6 5 56 32 14]]
Wedgie: ⟨⟨ 6 5 56 32 14 -6 72 30 0 116 57 14 -104 -168 -70 ]]
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 317.311
Optimal ET sequence: 34d, 53d, 87, 121, 208
Badness: 0.024371
Hemikleismic
Subgroup: 2.3.5.7
Comma list: 4000/3969, 6144/6125
Mapping: [⟨1 0 1 4], ⟨0 12 10 -9]]
Wedgie: ⟨⟨ 12 10 -9 -12 -48 -49 ]]
Optimal tuning (POTE): ~2 = 1\1, ~35/32 = 158.649
Optimal ET sequence: 15, 38, 53, 121
Badness: 0.052054
11-limit
Subgroup: 2.3.5.7.11
Comma list: 121/120, 176/175, 4000/3969
Mapping: [⟨1 0 1 4 2], ⟨0 12 10 -9 11]]
Wedgie: ⟨⟨ 12 10 -9 11 -12 -48 -24 -49 -9 62 ]]
Optimal tuning (POTE): ~2 = 1\1, ~11/10 = 158.677
Optimal ET sequence: 15, 38, 53, 68, 121e
Badness: 0.038023
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 121/120, 176/175, 275/273, 325/324
Mapping: [⟨1 0 1 4 2 0], ⟨0 12 10 -9 11 28]]
Wedgie: ⟨⟨ 12 10 -9 11 28 -12 -48 -24 0 -49 -9 28 62 112 56 ]]
Optimal tuning (POTE): ~2 = 1\1, ~11/10 = 158.655
Optimal ET sequence: 15, 38f, 53, 121e
Badness: 0.026005
Clyde
Subgroup: 2.3.5.7
Comma list: 245/243, 3136/3125
Mapping: [⟨1 6 6 12], ⟨0 -12 -10 -25]]
- mapping generators: ~2, ~9/7
Wedgie: ⟨⟨ 12 10 25 -12 6 30 ]]
Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 441.335
- 7- and 9-odd-limit: ~9/7 = [12/25 0 0 -1/25⟩
- [[1 0 0 0⟩, [6/25 0 0 12/25⟩, [6/5 0 0 2/5⟩, [0 0 0 1⟩]
- eigenmonzo (unchanged-interval) basis: 2.7
Algebraic generator: real root of 5x3 - 6x - 3, the Poussami generator. Approximately 441.309 cents. Associated recurrence relationship quickly converges.
Optimal ET sequence: 19, 49, 68, 87, 155
Badness: 0.047261
11-limit
Subgroup: 2.3.5.7.11
Comma list: 245/243, 385/384, 3136/3125
Mapping: [⟨1 6 6 12 -5], ⟨0 -12 -10 -25 23]]
Wedgie: ⟨⟨ 12 10 25 -23 -12 6 -78 30 -88 -151 ]]
Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 441.355
Optimal ET sequence: 19, 49e, 68, 87, 329bd, 419bd, 503bd, 590bd
Badness: 0.047417
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 196/195, 245/243, 385/384, 625/624
Mapping: [⟨1 6 6 12 -5 14], ⟨0 -12 -10 -25 23 -28]]
Wedgie: ⟨⟨ 12 10 25 -23 28 -12 6 -78 0 30 -88 28 -151 -14 182 ]]
Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 441.363
Optimal ET sequence: 19, 49ef, 68, 87, 503bdf, 590bdf
Badness: 0.026842
Tritikleismic
Subgroup: 2.3.5.7
Comma list: 1029/1024, 15625/15552
Mapping: [⟨3 0 3 10], ⟨0 6 5 -2]]
- mapping generators: ~63/50, ~6/5
Wedgie: ⟨⟨ 18 15 -6 -18 -60 -56 ]]
Optimal tuning (POTE): ~63/50 = 1\3, ~6/5 = 316.872 (~21/20 = 83.128)
- 7-odd-limit: ~6/5 = [1/3 0 1/7 -1/7⟩
- [[1 0 0 0⟩, [2 0 6/7 -6/7⟩, [8/3 0 5/7 -5/7⟩, [8/3 0 -2/7 2/7⟩]
- eigenmonzo (unchanged-interval) basis: 2.7/5
- 9-odd-limit: ~6/5 = [5/21 1/7 0 -1/14⟩
- [[1 0 0 0⟩, [10/7 6/7 0 -3/7⟩, [46/21 5/7 0 -5/14⟩, [20/7 -2/7 0 1/7⟩]
- eigenmonzo (unchanged-interval) basis: 2.9/7
Optimal ET sequence: 15, 42bc, 57, 72, 159, 231
Badness: 0.056337
11-limit
Subgroup: 2.3.5.7.11
Comma list: 385/384, 441/440, 4000/3993
Mapping: [⟨3 0 3 10 8], ⟨0 6 5 -2 3]]
Wedgie: ⟨⟨ 18 15 -6 9 -18 -60 -48 -56 -31 46 ]]
Optimal tuning (POTE): ~44/35 = 1\3, ~6/5 = 316.881 (~21/20 = 83.119)
Minimax tuning:
- 11-odd-limit: ~6/5 = [5/21 1/7 0 -1/14⟩
- [[1 0 0 0 0⟩, [10/7 6/7 0 -3/7 0⟩, [46/21 5/7 0 -5/14 0⟩, [20/7 -2/7 0 1/7 0⟩, [71/21 3/7 0 -3/14 0⟩]
- eigenmonzo (unchanged-interval) basis: 2.9/7
Optimal ET sequence: 15, 42bc, 57, 72, 159, 231
Badness: 0.019333
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 325/324, 364/363, 385/384, 625/624
Mapping: [⟨3 0 3 10 8 0], ⟨0 6 5 -2 3 14]]
Wedgie: ⟨⟨ 18 15 -6 9 42 -18 -60 -48 0 -56 -31 42 46 140 112 ]]
Optimal tuning (POTE): ~44/35 = 1\3, ~6/5 = 316.9585 (~21/20 = 83.0415)
Optimal ET sequence: 72, 87, 159
Badness: 0.015652
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 273/272, 325/324, 364/363, 375/374, 385/384
Mapping: [⟨3 0 3 10 8 0 -2], ⟨0 6 5 -2 3 14 18]]
Optimal tuning (POTE): ~34/27 = 1\3, ~6/5 = 316.9082 (~21/20 = 83.0918)
Optimal ET sequence: 72, 159, 231f
Badness: 0.013551
Quadritikleismic
Subgroup: 2.3.5.7
Comma list: 2401/2400, 15625/15552
Mapping: [⟨4 0 4 7], ⟨0 6 5 4]]
- mapping generators: ~25/21, ~6/5
Wedgie: ⟨⟨ 24 20 16 -24 -42 -19 ]]
Optimal tuning (POTE): ~25/21 = 1\4, ~6/5 = 316.9999 (~126/125 = 16.9999)
Optimal ET sequence: 68, 72, 140, 212, 776cd, 988ccd, 1200ccd
Badness: 0.039231
11-limit
Subgroup: 2.3.5.7.11
Comma list: 385/384, 1375/1372, 6250/6237
Mapping: [⟨4 0 4 7 17], ⟨0 6 5 4 -3]]
Wedgie: ⟨⟨ 24 20 16 -12 -24 -42 -102 -19 -97 -89 ]]
Optimal tuning (POTE): ~25/21 = 1\4, ~6/5 = 316.9247 (~100/99 = 16.9247)
Optimal ET sequence: 68, 72, 140, 212, 284, 496ce, 780ccdee
Badness: 0.023406
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 325/324, 385/384, 625/624, 1375/1372
Mapping: [⟨4 0 4 7 17 0], ⟨0 6 5 4 -3 14]]
Wedgie: ⟨⟨ 24 20 16 -12 56 -24 -42 -102 0 -19 -97 56 -89 98 238 ]]
Optimal tuning (POTE): ~25/21 = 1\4, ~6/5 = 316.9887 (~100/99 = 16.9887)
Optimal ET sequence: 68, 72, 140, 212
Badness: 0.018731
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 289/288, 325/324, 385/384, 442/441, 625/624
Mapping: [⟨4 0 4 7 17 0 10], ⟨0 6 5 4 -3 14 6]]
Optimal tuning (POTE): ~25/21 = 1\4, ~6/5 = 316.9846 (~100/99 = 16.9846)
Optimal ET sequence: 68, 72, 140, 212g
Badness: 0.012784
Kleiboh
Subgroup: 2.3.5.7
Comma list: 1728/1715, 3125/3087
Mapping: [⟨1 6 6 6], ⟨0 -18 -15 -13]]
- mapping generators: ~2, ~25/21
Wedgie: ⟨⟨ 18 15 13 -18 -30 -12 ]]
Optimal tuning (POTE): ~2 = 1\1, ~25/21 = 294.303
Optimal ET sequence: 49, 53, 314d
Badness: 0.076460
11-limit
Subgroup: 2.3.5.7.11
Comma list: 176/175, 540/539, 3125/3087
Mapping: [⟨1 6 6 6 14], ⟨0 -18 -15 -13 -43]]
Optimal tuning (POTE): ~2 = 1\1, ~25/21 = 294.181
Optimal ET sequence: 49, 53, 102d, 155d
Badness: 0.052805
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 176/175, 275/273, 325/324, 540/539
Mapping: [⟨1 6 6 6 14 14], ⟨0 -18 -15 -13 -43 -42]]
Optimal tuning (POTE): ~2 = 1\1, ~13/11 = 294.187
Optimal ET sequence: 49f, 53, 102df, 155d
Badness: 0.031074
Marfifths
The marfifths temperament (19&140) tempers out the hemimage comma, 10976/10935. It splits the interval of major tenth (~10/3) into three marvelous fifth (112/75) intervals, and uses it for a generator.
Subgroup: 2.3.5.7
Comma list: 10976/10935, 15625/15552
Mapping: [⟨1 -6 -4 -17], ⟨0 18 15 47]]
- mapping generators: ~2, ~75/56
Wedgie: ⟨⟨ 18 15 47 -18 24 67 ]]
Optimal tuning (POTE): ~2 = 1\1, ~75/56 = 505.705
Optimal ET sequence: 19, …, 121, 140, 579, 719, 859bcd, 999bcd, 1858bbccdd
Badness: 0.063448
11-limit
Subgroup: 2.3.5.7.11
Comma list: 385/384, 6250/6237, 10976/10935
Mapping: [⟨1 -6 -4 -17 22], ⟨0 18 15 47 -44]]
Optimal tuning (POTE): ~2 = 1\1, ~75/56 = 505.684
Optimal ET sequence: 19, 121e, 140, 159, 299
Badness: 0.058902
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 325/324, 385/384, 625/624, 10976/10935
Mapping: [⟨1 -6 -4 -17 22 -14], ⟨0 18 15 47 -44 42]]
Optimal tuning (POTE): ~2 = 1\1, ~75/56 = 505.686
Optimal ET sequence: 19, 121e, 140, 159, 299
Badness: 0.030082
Diatessic
The diatessic temperament (121 & 140) is closely related to the diatess tuning (generator: 505.727281 cents).
Subgroup: 2.3.5.7.11
Comma list: 1375/1372, 2200/2187, 5632/5625
Mapping: [⟨1 -6 -4 -17 -37], ⟨0 18 15 47 96]]
Optimal tuning (POTE): ~2 = 1\1, ~75/56 = 505.740
Optimal ET sequence: 19e, …, 121, 140, 261, 401
Badness: 0.061172
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 325/324, 352/351, 625/624, 1375/1372
Mapping: [⟨1 -6 -4 -17 -37 -14], ⟨0 18 15 47 96 42]]
Optimal tuning (POTE): ~2 = 1\1, ~75/56 = 505.740
Optimal ET sequence: 19e, …, 121, 140, 261, 401
Badness: 0.028671
Marf
The marf temperament (19 & 121) has a POTE generator which strongly approximates the marvelous fifth interval of 112/75.
Subgroup: 2.3.5.7.11
Comma list: 540/539, 896/891, 15625/15552
Mapping: [⟨1 -6 -4 -17 14], ⟨0 18 15 47 -25]]
Optimal tuning (POTE): ~2 = 1\1, ~75/56 = 505.769
Optimal ET sequence: 19, 102d, 121
Badness: 0.075112
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 325/324, 540/539, 625/624, 896/891
Mapping: [⟨1 -6 -4 -17 14 -14], ⟨0 18 15 47 -25 42]]
Optimal tuning (POTE): ~2 = 1\1, ~75/56 = 505.771
Optimal ET sequence: 19, 102df, 121
Badness: 0.038317
Marthirds
The marthirds temperament (19 & 193) tempers out the breeze comma (laquadru-atruyo comma), 2460375/2458624. It splits the interval of minor tenth (~12/5) into four marvelous major third (56/45) intervals, and uses it for a generator.
Subgroup: 2.3.5.7
Comma list: 15625/15552, 2460375/2458624
Mapping: [⟨1 -6 -4 -19], ⟨0 24 20 69]]
- mapping generators: ~2, ~56/45
Wedgie: ⟨⟨ 24 20 69 -24 42 104 ]]
Optimal tuning (POTE): ~2 = 1\1, ~56/45 = 379.252
Optimal ET sequence: 19, …, 193, 212, 617c, 829c
Badness: 0.104253
11-limit
Subgroup: 2.3.5.7.11
Comma list: 1375/1372, 15625/15552, 19712/19683
Mapping: [⟨1 -6 -4 -19 -43], ⟨0 24 20 69 147]]
Optimal tuning (POTE): ~2 = 1\1, ~56/45 = 379.257
Optimal ET sequence: 19e, …, 193, 212, 405, 617c, 1022cce
Badness: 0.075624
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 325/324, 625/624, 1375/1372, 19712/19683
Mapping: [⟨1 -6 -4 -19 -43 -14], ⟨0 24 20 69 147 56]]
Optimal tuning (POTE): ~2 = 1\1, ~56/45 = 379.256
Optimal ET sequence: 19e, …, 193, 212, 405f, 617cff
Badness: 0.043728
Quartkeenlig
Quartkeenlig uses a generator in the 11-limit that is 33/32~36/35 tempered together, and is called so because it tempers out the quartisma by virtue of five 33/32's being with 7/6, keenanisma, 385/384, tempering 33/32 and 36/35 together, and liganellus comma (6250/6237). It can also be viewed as a regular temperament interpretation of stretched 23edo.
Subgroup: 2.3.5.7
Comma list: 15625/15552, 117649/116640
Mapping: [⟨1 0 1 1], ⟨0 36 30 41]]
- mapping generator: ~2, ~36/35
Optimal tuning (CTE): ~2 = 1\1, ~36/35 = 52.8562
Optimal ET sequence: 68, 91, 159, 386d, 545dd
Badness: 0.146
11-limit
Subgroup: 2.3.5.7.11
Comma list: 385/384, 6250/6237, 67228/66825
Mapping: [⟨1 0 1 1 5], ⟨0 36 30 41 -35]]
Optimal tuning (CTE): ~2 = 1\1, ~33/32 = 52.8524
Optimal ET sequence: 68, 91, 159, 386d, 545dd
Badness: 0.0865
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 325/324, 385/384, 625/624, 16807/16731
Mapping: [⟨1 0 1 1 5 0], ⟨0 36 30 41 -35 84]]
Optimal tuning (CTE): ~2 = 1\1, ~33/32 = 52.8562
Optimal ET sequence: 68, 159, 386d, 545ddf
Badness: 0.0477
Novemkleismic
Subgroup: 2.3.5.7
Comma list: 15625/15552, 40353607/40310784
Mapping: [⟨9 0 9 11], ⟨0 6 5 6]]
- mapping generators: ~2592/2401, ~6/5
Wedgie: ⟨⟨ 54 45 54 -54 -66 -1 ]]
Optimal tuning (POTE): ~2592/2401 = 1\9, ~6/5 = 317.005 (~36/35 = 50.338)
Optimal ET sequence: 72, 261, 333, 405, 477c, 882c
Badness: 0.193429
11-limit
Subgroup: 2.3.5.7.11
Comma list: 1375/1372, 4000/3993, 15625/15552
Mapping: [⟨9 0 9 11 24], ⟨0 6 5 6 3]]
Optimal tuning (POTE): ~250/231 = 1\9, ~6/5 = 317.010 (~36/35 = 50.343)
Optimal ET sequence: 72, 261, 333, 405, 882c
Badness: 0.051730
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 325/324, 625/624, 1375/1372, 4000/3993
Mapping: [⟨9 0 9 11 24 0], ⟨0 6 5 6 3 14]]
Optimal tuning (POTE): ~250/231 = 1\9, ~6/5 = 317.086 (~36/35 = 50.419)
Optimal ET sequence: 72, 189f, 261, 333, 738cf
Badness: 0.039072
Sqrtphi
The just value of sqrt (φ) is 416.545 cents.
Subgroup: 2.3.5.7
Comma list: 15625/15552, 16875/16807
Mapping: [⟨1 12 11 16], ⟨0 -30 -25 -38]]
- mapping generators: ~2, 125/98
Wedgie: ⟨⟨ 30 25 38 -30 -24 18 ]]
Optimal tuning (POTE): ~2 = 1\1, ~125/98 = 416.603
Optimal ET sequence: 49, 72, 193, 265
Badness: 0.070378
11-limit
Subgroup: 2.3.5.7.11
Comma list: 540/539, 1375/1372, 4375/4356
Mapping: [⟨1 12 11 16 17], ⟨0 -30 -25 -38 -39]]
Wedgie: ⟨⟨ 30 25 38 39 -30 -24 -42 18 4 -22 ]]
Optimal tuning (POTE): ~2 = 1\1, ~14/11 = 416.604
Optimal ET sequence: 49, 72, 193, 265
Badness: 0.025515
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 325/324, 364/363, 625/624, 1375/1372
Mapping: [⟨1 12 11 16 17 28], ⟨0 -30 -25 -38 -39 -70]]
Wedgie: ⟨⟨ 30 25 38 39 70 -30 -24 -42 0 18 4 70 -22 56 98 ]]
Optimal tuning (POTE): ~2 = 1\1, ~14/11 = 416.585
Optimal ET sequence: 49f, 72, 121, 193
Badness: 0.020040
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 325/324, 364/363, 375/374, 540/539, 595/594
Mapping: [⟨1 12 11 16 17 28 27], ⟨0 -30 -25 -38 -39 -70 -66]]
Optimal tuning (POTE): ~2 = 1\1, ~14/11 = 416.585
Optimal ET sequence: 49fg, 72, 121, 193
Badness: 0.013028
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 325/324, 364/363, 375/374, 400/399, 442/441, 595/594
Mapping: [⟨1 12 11 16 17 28 27 -2], ⟨0 -30 -25 -38 -39 -70 -66 18]]
Optimal tuning (POTE): ~2 = 1\1, ~14/11 = 416.580
Optimal ET sequence: 49fg, 72, 121, 193
Badness: 0.014748
- Scales
- Music