Prime factorization
|
32 × 29
|
Step size
|
4.5977¢
|
Fifth
|
153\261 (703.448¢) (→17\29)
|
Semitones (A1:m2)
|
27:18 (124.1¢ : 82.76¢)
|
Consistency limit
|
7
|
Distinct consistency limit
|
7
|
261 equal divisions of the octave (261edo), or 261-tone equal temperament (261tet), 261 equal temperament (261et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 261 equal parts of about 4.6 ¢ each.
Theory
Approximation of prime intervals in 261 EDO
Prime number
|
2
|
3
|
5
|
7
|
11
|
13
|
17
|
19
|
Error
|
absolute (¢)
|
+0.00
|
+1.49
|
-0.11
|
+1.29
|
+0.41
|
+0.85
|
+0.79
|
+1.34
|
relative (%)
|
+0
|
+32
|
-2
|
+28
|
+9
|
+19
|
+17
|
+29
|
Steps (reduced)
|
261 (0)
|
414 (153)
|
606 (84)
|
733 (211)
|
903 (120)
|
966 (183)
|
1067 (23)
|
1109 (65)
|