261edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 260edo261edo262edo →
Prime factorization 32 × 29
Step size 4.5977¢
Fifth 153\261 (703.448¢) (→17\29)
Semitones (A1:m2) 27:18 (124.1¢ : 82.76¢)
Consistency limit 7
Distinct consistency limit 7

261 equal divisions of the octave (261edo), or 261-tone equal temperament (261tet), 261 equal temperament (261et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 261 equal parts of about 4.6 ¢ each.

Theory

Approximation of prime intervals in 261 EDO
Prime number 2 3 5 7 11 13 17 19
Error absolute (¢) +0.00 +1.49 -0.11 +1.29 +0.41 +0.85 +0.79 +1.34
relative (%) +0 +32 -2 +28 +9 +19 +17 +29
Steps (reduced) 261 (0) 414 (153) 606 (84) 733 (211) 903 (120) 966 (183) 1067 (23) 1109 (65)