262edo
Jump to navigation
Jump to search
Prime factorization
2 × 131
Step size
4.58015¢
Fifth
153\262 (700.763¢)
Semitones (A1:m2)
23:21 (105.3¢ : 96.18¢)
Consistency limit
5
Distinct consistency limit
5
← 261edo | 262edo | 263edo → |
262 equal divisions of the octave (262edo), or 262-tone equal temperament (262tet), 262 equal temperament (262et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 262 equal parts of about 4.58 ¢ each.
Theory
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | absolute (¢) | -1.19 | -1.58 | +2.17 | +2.20 | -1.70 | +2.22 | +1.81 | +0.39 | +0.20 | +0.97 | -0.79 |
relative (%) | -26 | -35 | +47 | +48 | -37 | +48 | +39 | +8 | +4 | +21 | -17 | |
Steps (reduced) |
415 (153) |
608 (84) |
736 (212) |
831 (45) |
906 (120) |
970 (184) |
1024 (238) |
1071 (23) |
1113 (65) |
1151 (103) |
1185 (137) |
This page is a stub. You can help the Xenharmonic Wiki by expanding it.