# 262edo

Jump to navigation
Jump to search
Prime factorization
2 × 131
Step size
4.58015¢
Fifth
153\262 (700.763¢)
Semitones (A1:m2)
23:21 (105.3¢ : 96.18¢)
Consistency limit
5
Distinct consistency limit
5

← 261edo | 262edo | 263edo → |

**262 equal divisions of the octave** (abbreviated **262edo** or **262ed2**), also called **262-tone equal temperament** (**262tet**) or **262 equal temperament** (**262et**) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 262 equal parts of about 4.580 ¢ each. Each step represents a frequency ratio of 2^{1/262}, or the 262nd root of 2.

### Odd harmonics

Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|

Error | absolute (¢) | -1.19 | -1.58 | +2.17 | +2.20 | -1.70 | +2.22 | +1.81 | +0.39 | +0.20 | +0.97 | -0.79 |

relative (%) | -26 | -35 | +47 | +48 | -37 | +48 | +39 | +8 | +4 | +21 | -17 | |

Steps (reduced) |
415 (153) |
608 (84) |
736 (212) |
831 (45) |
906 (120) |
970 (184) |
1024 (238) |
1071 (23) |
1113 (65) |
1151 (103) |
1185 (137) |

*This page is a stub. You can help the Xenharmonic Wiki by expanding it.*