# 260edo

 ← 259edo 260edo 261edo →
Prime factorization 22 × 5 × 13
Step size 4.61538¢
Fifth 152\260 (701.538¢) (→38\65)
Semitones (A1:m2) 24:20 (110.8¢ : 92.31¢)
Consistency limit 9
Distinct consistency limit 9

260 equal divisions of the octave (260edo), or 260-tone equal temperament (260tet), 260 equal temperament (260et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 260 equal parts of about 4.62 ¢ each.

## Theory

In 5-limit 260edo has the same mapping as 65edo, and in 7-limit the same as 130edo.

260edo offers a sizeable improvement in 29-limit over 130edo, tempering out 841/840, 16820/16807, and 47096/46875.

### Harmonics

Approximation of prime harmonics in 260edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error absolute (¢) +0.00 -0.42 +1.38 +0.40 -2.09 -0.53 +1.20 -2.13 -0.58 -0.35 -0.42
relative (%) +0 -9 +30 +9 -45 -11 +26 -46 -13 -8 -9
Steps
(reduced)
260
(0)
412
(152)
604
(84)
730
(210)
899
(119)
962
(182)
1063
(23)
1104
(64)
1176
(136)
1263
(223)
1288
(248)

## Scales

• Kartvelian Tetradecatonic: 18 18 18 18 18 18 19 19 19 19 19 19 19 19

## Trivia

English Wikipedia has an article on:

260 is the number of days in the Mayan sacred calendar Tzolkin.