260edo
Jump to navigation
Jump to search
Prime factorization
22 × 5 × 13
Step size
4.61538¢
Fifth
152\260 (701.538¢) (→38\65)
Semitones (A1:m2)
24:20 (110.8¢ : 92.31¢)
Consistency limit
9
Distinct consistency limit
9
← 259edo | 260edo | 261edo → |
260 equal divisions of the octave (260edo), or 260-tone equal temperament (260tet), 260 equal temperament (260et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 260 equal parts of about 4.62 ¢ each.
Theory
In 5-limit 260edo has the same mapping as 65edo, and in 7-limit the same as 130edo.
260edo offers a sizeable improvement in 29-limit over 130edo, tempering out 841/840, 16820/16807, and 47096/46875.
Harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | absolute (¢) | +0.00 | -0.42 | +1.38 | +0.40 | -2.09 | -0.53 | +1.20 | -2.13 | -0.58 | -0.35 | -0.42 |
relative (%) | +0 | -9 | +30 | +9 | -45 | -11 | +26 | -46 | -13 | -8 | -9 | |
Steps (reduced) |
260 (0) |
412 (152) |
604 (84) |
730 (210) |
899 (119) |
962 (182) |
1063 (23) |
1104 (64) |
1176 (136) |
1263 (223) |
1288 (248) |
Scales
- Kartvelian Tetradecatonic: 18 18 18 18 18 18 19 19 19 19 19 19 19 19
Trivia

English Wikipedia has an article on:
260 is the number of days in the Mayan sacred calendar Tzolkin.