260edo

From Xenharmonic Wiki
Jump to navigation Jump to search
260edo
Prime factorization 22 × 5 × 13
Step size 4.61538¢
Fifth 152\260 (701.54¢) (→ 38\65)
Major 2nd 44\130 (203.08¢)

The 260 equal divisions of the octave (260edo), or the 260-tone equal temperament (260tet), 260 equal temperament (260et) when viewed from a regular temperament perspective, divides the octave into 260 equal parts of about 4.62 cents each.

Theory

In 5-limit 260edo has the same mapping as 65edo, and in 7-limit the same as 130edo.

260edo offers a sizeable improvement in 29-limit over 130edo, tempering out 841/840, 16820/16807, and 47096/46875.

Harmonics

Approximation of prime harmonics in 260edo
Harmonic 2 3 5 7 11 13 17 19 23 29
Error absolute (¢) +0.00 -0.42 +1.38 +0.40 -2.09 -0.53 +1.20 -2.13 -0.58 -0.35
relative (%) +0 -9 +30 +9 -45 -11 +26 -46 -13 -8
Steps
(reduced)
260
(0)
412
(152)
604
(84)
730
(210)
899
(119)
962
(182)
1063
(23)
1104
(64)
1176
(136)
1263
(223)

Trivia

English Wikipedia has an article on:

260 is the number of days in the Mayan sacred calendar Tzolkin.