130edo
← 129edo | 130edo | 131edo → |
130 equal divisions of the octave (abbreviated 130edo or 130ed2), also called 130-tone equal temperament (130tet) or 130 equal temperament (130et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 130 equal parts of about 9.23 ¢ each. Each step represents a frequency ratio of 21/130, or the 130th root of 2.
Theory
130edo is a zeta peak edo, a zeta peak integer edo, and a zeta integral edo but not a gap edo. It is distinctly consistent to the 15-odd-limit and is the first nontrivial edo to be consistent in the 14-odd-prime-sum-limit. As an equal temperament, it tempers out 2401/2400, 3136/3125, 6144/6125, and 19683/19600 in the 7-limit; 243/242, 441/440, 540/539, and 4000/3993 in the 11-limit; and 351/350, 364/363, 676/675, 729/728, 1001/1000, 1575/1573, 1716/1715, 2080/2079, 4096/4095, and 4225/4224 in the 13-limit. It can be used to tune a variety of temperaments, including hemiwürschmidt, sesquiquartififths, harry and hemischis. It also can be used to tune the rank-3 temperament jove, tempering out 243/242 and 441/440, plus 364/363 for the 13-limit and 595/594 for the 17-limit. It gives the optimal patent val for 11-limit hemiwürschmidt and sesquart and 13-limit harry.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | -0.42 | +1.38 | +0.40 | +2.53 | -0.53 | -3.42 | -2.13 | -0.58 |
Relative (%) | +0.0 | -4.5 | +14.9 | +4.4 | +27.4 | -5.7 | -37.0 | -23.1 | -6.3 | |
Steps (reduced) |
130 (0) |
206 (76) |
302 (42) |
365 (105) |
450 (60) |
481 (91) |
531 (11) |
552 (32) |
588 (68) |
Harmonic | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 | 61 | |
---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +4.27 | -0.42 | -2.11 | -4.45 | -3.83 | -0.89 | +3.42 | +2.37 | +0.04 |
Relative (%) | +46.2 | -4.6 | -22.9 | -48.2 | -41.4 | -9.7 | +37.0 | +25.6 | +0.4 | |
Steps (reduced) |
632 (112) |
644 (124) |
677 (27) |
696 (46) |
705 (55) |
722 (72) |
745 (95) |
765 (115) |
771 (121) |
Subsets and supersets
Since 130 factors into 2 × 5 × 13, 130edo has subset edos 2, 5, 10, 13, 26, and 65.
260edo, which divides the edostep in two, provides a strong correction for the 29th harmonic.
Intervals
Degree | Cents | Approximate ratios |
---|---|---|
0 | 0.00 | 1/1 |
1 | 9.23 | 126/125, 144/143, 169/168, 176/175, 196/195, 225/224 |
2 | 18.46 | 78/77, 81/80, 91/90, 99/98, 100/99, 105/104, 121/120 |
3 | 27.69 | 56/55, 64/63, 65/64, 66/65 |
4 | 36.92 | 45/44, 49/48, 50/49, 55/54 |
5 | 46.15 | 36/35, 40/39 |
6 | 55.38 | 33/32 |
7 | 64.62 | 27/26, 28/27 |
8 | 73.85 | 25/24, 26/25 |
9 | 83.08 | 21/20, 22/21 |
10 | 92.31 | 135/128 |
11 | 101.54 | 35/33 |
12 | 110.77 | 16/15 |
13 | 120.00 | 15/14 |
14 | 129.23 | 14/13 |
15 | 138.46 | 13/12 |
16 | 147.69 | 12/11 |
17 | 156.92 | 35/32 |
18 | 166.15 | 11/10 |
19 | 175.38 | 72/65 |
20 | 184.62 | 10/9 |
21 | 193.85 | 28/25 |
22 | 203.08 | 9/8 |
23 | 212.31 | 44/39 |
24 | 221.54 | 25/22 |
25 | 230.77 | 8/7 |
26 | 240.00 | 55/48 |
27 | 249.23 | 15/13 |
28 | 258.46 | 64/55 |
29 | 267.69 | 7/6 |
30 | 276.92 | 75/64 |
31 | 286.15 | 13/11 |
32 | 295.38 | 32/27 |
33 | 304.62 | 25/21 |
34 | 313.85 | 6/5 |
35 | 323.08 | 65/54 |
36 | 332.31 | 40/33 |
37 | 341.54 | 39/32 |
38 | 350.77 | 11/9, 27/22 |
39 | 360.00 | 16/13 |
40 | 369.23 | 26/21 |
41 | 378.46 | 56/45 |
42 | 387.69 | 5/4 |
43 | 396.92 | 44/35 |
44 | 406.15 | 81/64 |
45 | 415.38 | 14/11 |
46 | 424.62 | 32/25 |
47 | 433.85 | 9/7 |
48 | 443.08 | 84/65, 128/99 |
49 | 452.31 | 13/10 |
50 | 461.54 | 64/49, 72/55 |
51 | 470.77 | 21/16 |
52 | 480.00 | 33/25 |
53 | 489.23 | 65/49 |
54 | 498.46 | 4/3 |
55 | 507.69 | 75/56 |
56 | 516.92 | 27/20 |
57 | 526.15 | 65/48 |
58 | 535.38 | 15/11 |
59 | 544.62 | 48/35 |
60 | 553.85 | 11/8 |
61 | 563.08 | 18/13 |
62 | 572.31 | 25/18 |
63 | 581.54 | 7/5 |
64 | 590.77 | 45/32 |
65 | 600.00 | 99/70, 140/99 |
… | … | … |
Notation
Sagittal notation
Steps | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Symbol |
Approximation to JI
Zeta peak index
Tuning | Strength | Closest edo | Integer limit | ||||||
---|---|---|---|---|---|---|---|---|---|
ZPI | Steps per octave | Step size (cents) | Height | Integral | Gap | Edo | Octave (cents) | Consistent | Distinct |
796zpi | 130.003910460506 | 9.23049157328654 | 10.355108 | 1.634018 | 19.594551 | 130edo | 1199.96390452725 | 16 | 16 |
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3.5.7 | 2401/2400, 3136/3125, 19683/19600 | [⟨130 206 302 365]] | −0.119 | 0.311 | 3.37 |
2.3.5.7.11 | 243/242, 441/440, 3136/3125, 4000/3993 | [⟨130 206 302 365 450]] | −0.241 | 0.370 | 4.02 |
2.3.5.7.11.13 | 243/242, 351/350, 364/363, 441/440, 3136/3125 | [⟨130 206 302 365 450 481]] | −0.177 | 0.367 | 3.98 |
Rank-2 temperaments
Note: temperaments supported by 65et are not included.
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperament |
---|---|---|---|---|
1 | 3\130 | 27.69 | 64/63 | Arch |
1 | 7\130 | 64.62 | 26/25 | Rectified hebrew |
1 | 9\130 | 83.08 | 21/20 | Sextilififths |
1 | 19\130 | 175.38 | 72/65 | Sesquiquartififths / sesquart |
1 | 21\130 | 193.85 | 28/25 | Hemiwürschmidt |
1 | 27\130 | 249.23 | 15/13 | Hemischis |
1 | 41\130 | 378.46 | 56/45 | Subpental |
2 | 6\130 | 55.38 | 33/32 | Septisuperfourth |
2 | 9\130 | 83.08 | 21/20 | Harry |
2 | 17\130 | 156.92 | 35/32 | Bison |
2 | 19\130 | 175.38 | 448/405 | Bisesqui |
2 | 54\130 (11\130) |
498.46 (101.54) |
4/3 (35/33) |
Bischismic |
5 | 27\130 (1\130) |
249.23 (9.23) |
81/70 (176/175) |
Hemipental |
10 | 27\130 (1\130) |
249.23 (9.23) |
15/13 (176/175) |
Decoid |
10 | 54\130 (2\130) |
498.46 (18.46) |
4/3 (81/80) |
Decal |
26 | 54\130 (1\130) |
498.46 (9.23) |
4/3 (225/224) |
Bosonic |
* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct
Scales
Step | Cents | Distance to the nearest JI interval (selected ratios) |
---|---|---|
13 (13/130) | 120.000 | 15/14 (+0.557 ¢) |
7 (20/130) | 184.615 | 10/9 (+2.211 ¢) |
9 (29/130) | 267.692 | 7/6 (+0,821 ¢) |
9 (38/130) | 350.769 | 11/9 (+3.361 ¢) |
9 (47/130) | 433.846 | 9/7 (−1.238 ¢) |
7 (54/130) | 498.462 | 4/3 (+0.417 ¢) |
13 (67/130) | 618.462 | 10/7 (+0.974 ¢) |
9 (76/130) | 701.538 | 3/2 (−0.417 ¢) |
7 (83/130) | 766.154 | 14/9 (+1.238 ¢) |
13 (96/130) | 886.154 | 5/3 (+1.795 ¢) |
5 (101/130) | 932.308 | 12/7 (−0.821 ¢) |
13 (114/130) | 1052.308 | 11/6 (+2.945 ¢) |
7 (121/130) | 1116.923 | 21/11 (−2.540 ¢) |
9 (130/130) | 1200.000 | Octave (2/1, 0 ¢) |
Music
- See also: Category:130edo tracks
- wazzock (2024)
- The Paradise of Cantor play (2006)