Lumatone mapping for 130edo

From Xenharmonic Wiki
Jump to navigation Jump to search

There are many conceivable ways to map 130edo onto the onto the Lumatone keyboard. However, it has 2 mutually-exclusive rings of fifths, so the Standard Lumatone mapping for Pythagorean is not one of them. The second best 5th is diatonic, but almost as sharp as 27edo and covers less than half the notes. The third best produces 5 unconnected rings of 26edo 5ths.

Diatonic

28
52
33
57
81
105
129
14
38
62
86
110
4
28
52
19
43
67
91
115
9
33
57
81
105
129
0
24
48
72
96
120
14
38
62
86
110
4
28
52
5
29
53
77
101
125
19
43
67
91
115
9
33
57
81
105
129
116
10
34
58
82
106
0
24
48
72
96
120
14
38
62
86
110
4
28
52
121
15
39
63
87
111
5
29
53
77
101
125
19
43
67
91
115
9
33
57
81
105
129
102
126
20
44
68
92
116
10
34
58
82
106
0
24
48
72
96
120
14
38
62
86
110
4
28
52
1
25
49
73
97
121
15
39
63
87
111
5
29
53
77
101
125
19
43
67
91
115
9
33
57
81
105
129
54
78
102
126
20
44
68
92
116
10
34
58
82
106
0
24
48
72
96
120
14
38
62
86
110
4
1
25
49
73
97
121
15
39
63
87
111
5
29
53
77
101
125
19
43
67
91
115
9
54
78
102
126
20
44
68
92
116
10
34
58
82
106
0
24
48
72
96
120
1
25
49
73
97
121
15
39
63
87
111
5
29
53
77
101
125
54
78
102
126
20
44
68
92
116
10
34
58
82
106
1
25
49
73
97
121
15
39
63
87
111
54
78
102
126
20
44
68
92
1
25
49
73
97
54
78

There is an alternate diatonic scale that makes 5-limit chords easy to play, but it has a slight octave stretch. Since you can access nearly every note in alternating octaves, this may actually be advantageous.

120
11
3
24
45
66
87
125
16
37
58
79
100
121
12
8
29
50
71
92
113
4
25
46
67
88
0
21
42
63
84
105
126
17
38
59
80
101
122
13
13
34
55
76
97
118
9
30
51
72
93
114
5
26
47
68
89
5
26
47
68
89
110
1
22
43
64
85
106
127
18
39
60
81
102
123
14
18
39
60
81
102
123
14
35
56
77
98
119
10
31
52
73
94
115
6
27
48
69
90
10
31
52
73
94
115
6
27
48
69
90
111
2
23
44
65
86
107
128
19
40
61
82
103
124
15
44
65
86
107
128
19
40
61
82
103
124
15
36
57
78
99
120
11
32
53
74
95
116
7
28
49
70
91
99
120
11
32
53
74
95
116
7
28
49
70
91
112
3
24
45
66
87
108
129
20
41
62
83
104
45
66
87
108
129
20
41
62
83
104
125
16
37
58
79
100
121
12
33
54
75
96
117
100
121
12
33
54
75
96
117
8
29
50
71
92
113
4
25
46
67
88
109
46
67
88
109
0
21
42
63
84
105
126
17
38
59
80
101
122
101
122
13
34
55
76
97
118
9
30
51
72
93
114
47
68
89
110
1
22
43
64
85
106
127
102
123
14
35
56
77
98
119
48
69
90
111
2
103
124

Slicing both the generator and period in two will cover most of the notes in a fairly accessible way, but with range reduced to 2 & 1/2 octaves.

2
13
7
18
29
40
51
1
12
23
34
45
56
67
78
6
17
28
39
50
61
72
83
94
105
116
0
11
22
33
44
55
66
77
88
99
110
121
2
13
5
16
27
38
49
60
71
82
93
104
115
126
7
18
29
40
51
129
10
21
32
43
54
65
76
87
98
109
120
1
12
23
34
45
56
67
78
4
15
26
37
48
59
70
81
92
103
114
125
6
17
28
39
50
61
72
83
94
105
116
128
9
20
31
42
53
64
75
86
97
108
119
0
11
22
33
44
55
66
77
88
99
110
121
2
13
14
25
36
47
58
69
80
91
102
113
124
5
16
27
38
49
60
71
82
93
104
115
126
7
18
29
40
51
41
52
63
74
85
96
107
118
129
10
21
32
43
54
65
76
87
98
109
120
1
12
23
34
45
56
79
90
101
112
123
4
15
26
37
48
59
70
81
92
103
114
125
6
17
28
39
50
61
106
117
128
9
20
31
42
53
64
75
86
97
108
119
0
11
22
33
44
55
14
25
36
47
58
69
80
91
102
113
124
5
16
27
38
49
60
41
52
63
74
85
96
107
118
129
10
21
32
43
54
79
90
101
112
123
4
15
26
37
48
59
106
117
128
9
20
31
42
53
14
25
36
47
58
41
52

Harry

If you want to put the best tuned harmonies close together, the harry mapping is the most efficient one. The 14L 2s mapping covers the whole gamut with a range of 2 octaves.

20
29
22
31
40
49
58
15
24
33
42
51
60
69
78
17
26
35
44
53
62
71
80
89
98
107
10
19
28
37
46
55
64
73
82
91
100
109
118
127
12
21
30
39
48
57
66
75
84
93
102
111
120
129
8
17
26
5
14
23
32
41
50
59
68
77
86
95
104
113
122
1
10
19
28
37
46
7
16
25
34
43
52
61
70
79
88
97
106
115
124
3
12
21
30
39
48
57
66
75
0
9
18
27
36
45
54
63
72
81
90
99
108
117
126
5
14
23
32
41
50
59
68
77
86
95
11
20
29
38
47
56
65
74
83
92
101
110
119
128
7
16
25
34
43
52
61
70
79
88
97
106
115
124
31
40
49
58
67
76
85
94
103
112
121
0
9
18
27
36
45
54
63
72
81
90
99
108
117
126
60
69
78
87
96
105
114
123
2
11
20
29
38
47
56
65
74
83
92
101
110
119
128
80
89
98
107
116
125
4
13
22
31
40
49
58
67
76
85
94
103
112
121
109
118
127
6
15
24
33
42
51
60
69
78
87
96
105
114
123
129
8
17
26
35
44
53
62
71
80
89
98
107
116
28
37
46
55
64
73
82
91
100
109
118
48
57
66
75
84
93
102
111
77
86
95
104
113
97
106

Since you only need a gamut of 54 notes to hit all harmonics up to 17, you can compress it down to the 2L 6s mapping and still have access to all the well-tuned simple ratios of the edo.

63
72
101
110
119
128
7
0
9
18
27
36
45
54
63
38
47
56
65
74
83
92
101
110
119
128
67
76
85
94
103
112
121
0
9
18
27
36
45
54
105
114
123
2
11
20
29
38
47
56
65
74
83
92
101
110
119
4
13
22
31
40
49
58
67
76
85
94
103
112
121
0
9
18
27
36
45
42
51
60
69
78
87
96
105
114
123
2
11
20
29
38
47
56
65
74
83
92
101
110
71
80
89
98
107
116
125
4
13
22
31
40
49
58
67
76
85
94
103
112
121
0
9
18
27
36
118
127
6
15
24
33
42
51
60
69
78
87
96
105
114
123
2
11
20
29
38
47
56
65
74
83
92
101
44
53
62
71
80
89
98
107
116
125
4
13
22
31
40
49
58
67
76
85
94
103
112
121
0
9
109
118
127
6
15
24
33
42
51
60
69
78
87
96
105
114
123
2
11
20
29
38
47
35
44
53
62
71
80
89
98
107
116
125
4
13
22
31
40
49
58
67
76
100
109
118
127
6
15
24
33
42
51
60
69
78
87
96
105
114
26
35
44
53
62
71
80
89
98
107
116
125
4
13
91
100
109
118
127
6
15
24
33
42
51
17
26
35
44
53
62
71
80
82
91
100
109
118
8
17


ViewTalkEditLumatone mappings 
127edo128edo129edoLumatone mapping for 130edo131edo132edo133edo