There are many conceivable ways to map 129edo onto the onto the Lumatone keyboard. However, it has 3 mutually-exclusive rings of fifths, so the Standard Lumatone mapping for Pythagorean is not one of them.
Diatonic
You can use the b val, which is slightly sharper than 17edo, but due to the size of the edo, this will not cover all the notes unless expanded out from 5L 2s to 5L 12s, reducing the range commensurately, nor will it make the best note combinations easy to play.
5L 2s
18
41
25
48
71
94
117
9
32
55
78
101
124
18
41
16
39
62
85
108
2
25
48
71
94
117
0
23
46
69
92
115
9
32
55
78
101
124
18
41
7
30
53
76
99
122
16
39
62
85
108
2
25
48
71
94
117
120
14
37
60
83
106
0
23
46
69
92
115
9
32
55
78
101
124
18
41
127
21
44
67
90
113
7
30
53
76
99
122
16
39
62
85
108
2
25
48
71
94
117
111
5
28
51
74
97
120
14
37
60
83
106
0
23
46
69
92
115
9
32
55
78
101
124
18
41
12
35
58
81
104
127
21
44
67
90
113
7
30
53
76
99
122
16
39
62
85
108
2
25
48
71
94
117
65
88
111
5
28
51
74
97
120
14
37
60
83
106
0
23
46
69
92
115
9
32
55
78
101
124
12
35
58
81
104
127
21
44
67
90
113
7
30
53
76
99
122
16
39
62
85
108
2
65
88
111
5
28
51
74
97
120
14
37
60
83
106
0
23
46
69
92
115
12
35
58
81
104
127
21
44
67
90
113
7
30
53
76
99
122
65
88
111
5
28
51
74
97
120
14
37
60
83
106
12
35
58
81
104
127
21
44
67
90
113
65
88
111
5
28
51
74
97
12
35
58
81
104
65
88
5L 12s
107
114
116
123
1
8
15
118
125
3
10
17
24
31
38
127
5
12
19
26
33
40
47
54
61
68
0
7
14
21
28
35
42
49
56
63
70
77
84
91
9
16
23
30
37
44
51
58
65
72
79
86
93
100
107
114
121
11
18
25
32
39
46
53
60
67
74
81
88
95
102
109
116
123
1
8
15
20
27
34
41
48
55
62
69
76
83
90
97
104
111
118
125
3
10
17
24
31
38
45
22
29
36
43
50
57
64
71
78
85
92
99
106
113
120
127
5
12
19
26
33
40
47
54
61
68
38
45
52
59
66
73
80
87
94
101
108
115
122
0
7
14
21
28
35
42
49
56
63
70
77
84
91
98
61
68
75
82
89
96
103
110
117
124
2
9
16
23
30
37
44
51
58
65
72
79
86
93
100
107
91
98
105
112
119
126
4
11
18
25
32
39
46
53
60
67
74
81
88
95
102
109
116
114
121
128
6
13
20
27
34
41
48
55
62
69
76
83
90
97
104
111
118
15
22
29
36
43
50
57
64
71
78
85
92
99
106
113
120
127
38
45
52
59
66
73
80
87
94
101
108
115
122
0
68
75
82
89
96
103
110
117
124
2
9
91
98
105
112
119
126
4
11
121
128
6
13
20
15
22
Lithium
Instead, to take advantage of the all-round efficiency of meantone, which this is the highest edo to support, you need to slice the period and/or generator in three. Slicing the period gets you Lithium, which gives you a very 12edo-like experience with the 9L 3s mapping. However, this also does not cover the full gamut and the 12L 9s mos has a very small range & octaves all over the place.
9L 3s
111
122
121
3
14
25
36
120
2
13
24
35
46
57
68
1
12
23
34
45
56
67
78
89
100
111
0
11
22
33
44
55
66
77
88
99
110
121
3
14
10
21
32
43
54
65
76
87
98
109
120
2
13
24
35
46
57
9
20
31
42
53
64
75
86
97
108
119
1
12
23
34
45
56
67
78
89
19
30
41
52
63
74
85
96
107
118
0
11
22
33
44
55
66
77
88
99
110
121
3
18
29
40
51
62
73
84
95
106
117
128
10
21
32
43
54
65
76
87
98
109
120
2
13
24
35
39
50
61
72
83
94
105
116
127
9
20
31
42
53
64
75
86
97
108
119
1
12
23
34
45
56
67
78
71
82
93
104
115
126
8
19
30
41
52
63
74
85
96
107
118
0
11
22
33
44
55
66
77
88
114
125
7
18
29
40
51
62
73
84
95
106
117
128
10
21
32
43
54
65
76
87
98
17
28
39
50
61
72
83
94
105
116
127
9
20
31
42
53
64
75
86
97
60
71
82
93
104
115
126
8
19
30
41
52
63
74
85
96
107
92
103
114
125
7
18
29
40
51
62
73
84
95
106
6
17
28
39
50
61
72
83
94
105
116
38
49
60
71
82
93
104
115
81
92
103
114
125
113
124
12L 9s
0
10
1
11
21
31
41
121
2
12
22
32
42
52
62
122
3
13
23
33
43
53
63
73
83
93
113
123
4
14
24
34
44
54
64
74
84
94
104
114
114
124
5
15
25
35
45
55
65
75
85
95
105
115
125
6
16
105
115
125
6
16
26
36
46
56
66
76
86
96
106
116
126
7
17
27
37
106
116
126
7
17
27
37
47
57
67
77
87
97
107
117
127
8
18
28
38
48
58
68
97
107
117
127
8
18
28
38
48
58
68
78
88
98
108
118
128
9
19
29
39
49
59
69
79
89
108
118
128
9
19
29
39
49
59
69
79
89
99
109
119
0
10
20
30
40
50
60
70
80
90
100
110
120
0
10
20
30
40
50
60
70
80
90
100
110
120
1
11
21
31
41
51
61
71
81
91
101
111
121
31
41
51
61
71
81
91
101
111
121
2
12
22
32
42
52
62
72
82
92
102
112
122
52
62
72
82
92
102
112
122
3
13
23
33
43
53
63
73
83
93
103
113
83
93
103
113
123
4
14
24
34
44
54
64
74
84
94
104
114
104
114
124
5
15
25
35
45
55
65
75
85
95
105
6
16
26
36
46
56
66
76
86
96
106
27
37
47
57
67
77
87
97
58
68
78
88
98
79
89
Mothra
Slicing the generater in three gives you Mothra. Like Rodan in its neighbour 128edo, the 5L 11s Mosura mapping is the most efficient one that covers all the notes. Since you only need a gamut of 41 notes to hit all harmonics up to 21, the 1L 4s and 5L 1s mappings are still sufficient for many purposes.
1L 4s
30
55
59
84
109
5
30
63
88
113
9
34
59
84
109
92
117
13
38
63
88
113
9
34
59
84
96
121
17
42
67
92
117
13
38
63
88
113
9
34
125
21
46
71
96
121
17
42
67
92
117
13
38
63
88
113
9
0
25
50
75
100
125
21
46
71
96
121
17
42
67
92
117
13
38
63
88
29
54
79
104
0
25
50
75
100
125
21
46
71
96
121
17
42
67
92
117
13
38
63
33
58
83
108
4
29
54
79
104
0
25
50
75
100
125
21
46
71
96
121
17
42
67
92
117
13
87
112
8
33
58
83
108
4
29
54
79
104
0
25
50
75
100
125
21
46
71
96
121
17
42
67
92
117
37
62
87
112
8
33
58
83
108
4
29
54
79
104
0
25
50
75
100
125
21
46
71
96
121
17
12
37
62
87
112
8
33
58
83
108
4
29
54
79
104
0
25
50
75
100
125
21
46
91
116
12
37
62
87
112
8
33
58
83
108
4
29
54
79
104
0
25
50
66
91
116
12
37
62
87
112
8
33
58
83
108
4
29
54
79
16
41
66
91
116
12
37
62
87
112
8
33
58
83
120
16
41
66
91
116
12
37
62
87
112
70
95
120
16
41
66
91
116
45
70
95
120
16
124
20
5L 1s
51
76
55
80
105
1
26
34
59
84
109
5
30
55
80
38
63
88
113
9
34
59
84
109
5
30
17
42
67
92
117
13
38
63
88
113
9
34
59
84
21
46
71
96
121
17
42
67
92
117
13
38
63
88
113
9
34
0
25
50
75
100
125
21
46
71
96
121
17
42
67
92
117
13
38
63
88
4
29
54
79
104
0
25
50
75
100
125
21
46
71
96
121
17
42
67
92
117
13
38
112
8
33
58
83
108
4
29
54
79
104
0
25
50
75
100
125
21
46
71
96
121
17
42
67
92
12
37
62
87
112
8
33
58
83
108
4
29
54
79
104
0
25
50
75
100
125
21
46
71
96
121
17
42
66
91
116
12
37
62
87
112
8
33
58
83
108
4
29
54
79
104
0
25
50
75
100
125
21
46
16
41
66
91
116
12
37
62
87
112
8
33
58
83
108
4
29
54
79
104
0
25
50
70
95
120
16
41
66
91
116
12
37
62
87
112
8
33
58
83
108
4
29
20
45
70
95
120
16
41
66
91
116
12
37
62
87
112
8
33
74
99
124
20
45
70
95
120
16
41
66
91
116
12
24
49
74
99
124
20
45
70
95
120
16
78
103
128
24
49
74
99
124
28
53
78
103
128
82
107
5L 11s
69
73
86
90
94
98
102
99
103
107
111
115
119
123
127
116
120
124
128
3
7
11
15
19
23
27
0
4
8
12
16
20
24
28
32
36
40
44
48
52
17
21
25
29
33
37
41
45
49
53
57
61
65
69
73
77
81
30
34
38
42
46
50
54
58
62
66
70
74
78
82
86
90
94
98
102
106
47
51
55
59
63
67
71
75
79
83
87
91
95
99
103
107
111
115
119
123
127
2
6
60
64
68
72
76
80
84
88
92
96
100
104
108
112
116
120
124
128
3
7
11
15
19
23
27
31
81
85
89
93
97
101
105
109
113
117
121
125
0
4
8
12
16
20
24
28
32
36
40
44
48
52
56
60
106
110
114
118
122
126
1
5
9
13
17
21
25
29
33
37
41
45
49
53
57
61
65
69
73
77
6
10
14
18
22
26
30
34
38
42
46
50
54
58
62
66
70
74
78
82
86
90
94
31
35
39
43
47
51
55
59
63
67
71
75
79
83
87
91
95
99
103
107
60
64
68
72
76
80
84
88
92
96
100
104
108
112
116
120
124
85
89
93
97
101
105
109
113
117
121
125
0
4
8
114
118
122
126
1
5
9
13
17
21
25
10
14
18
22
26
30
34
38
39
43
47
51
55
64
68
Other Mappings
Slicing both period and generator in three gives an unnamed temperament with a mos of 15L 6s that keeps octaves perfectly horizontal but has very limited range.
127
5
2
9
16
23
30
128
6
13
20
27
34
41
48
3
10
17
24
31
38
45
52
59
66
73
0
7
14
21
28
35
42
49
56
63
70
77
84
91
4
11
18
25
32
39
46
53
60
67
74
81
88
95
102
109
116
1
8
15
22
29
36
43
50
57
64
71
78
85
92
99
106
113
120
127
5
5
12
19
26
33
40
47
54
61
68
75
82
89
96
103
110
117
124
2
9
16
23
30
2
9
16
23
30
37
44
51
58
65
72
79
86
93
100
107
114
121
128
6
13
20
27
34
41
48
13
20
27
34
41
48
55
62
69
76
83
90
97
104
111
118
125
3
10
17
24
31
38
45
52
59
66
73
31
38
45
52
59
66
73
80
87
94
101
108
115
122
0
7
14
21
28
35
42
49
56
63
70
77
56
63
70
77
84
91
98
105
112
119
126
4
11
18
25
32
39
46
53
60
67
74
81
74
81
88
95
102
109
116
123
1
8
15
22
29
36
43
50
57
64
71
78
99
106
113
120
127
5
12
19
26
33
40
47
54
61
68
75
82
117
124
2
9
16
23
30
37
44
51
58
65
72
79
13
20
27
34
41
48
55
62
69
76
83
31
38
45
52
59
66
73
80
56
63
70
77
84
74
81