Lumatone mapping for 127edo

From Xenharmonic Wiki
Jump to navigation Jump to search

There are many conceivable ways to map 127edo onto the onto the Lumatone keyboard. Only one, however, agrees with the Standard Lumatone mapping for Pythagorean.

Diatonic

125
19
9
30
51
72
93
126
20
41
62
83
104
125
19
10
31
52
73
94
115
9
30
51
72
93
0
21
42
63
84
105
126
20
41
62
83
104
125
19
11
32
53
74
95
116
10
31
52
73
94
115
9
30
51
72
93
1
22
43
64
85
106
0
21
42
63
84
105
126
20
41
62
83
104
125
19
12
33
54
75
96
117
11
32
53
74
95
116
10
31
52
73
94
115
9
30
51
72
93
2
23
44
65
86
107
1
22
43
64
85
106
0
21
42
63
84
105
126
20
41
62
83
104
125
19
34
55
76
97
118
12
33
54
75
96
117
11
32
53
74
95
116
10
31
52
73
94
115
9
30
51
72
93
87
108
2
23
44
65
86
107
1
22
43
64
85
106
0
21
42
63
84
105
126
20
41
62
83
104
34
55
76
97
118
12
33
54
75
96
117
11
32
53
74
95
116
10
31
52
73
94
115
87
108
2
23
44
65
86
107
1
22
43
64
85
106
0
21
42
63
84
105
34
55
76
97
118
12
33
54
75
96
117
11
32
53
74
95
116
87
108
2
23
44
65
86
107
1
22
43
64
85
106
34
55
76
97
118
12
33
54
75
96
117
87
108
2
23
44
65
86
107
34
55
76
97
118
87
108

Due to the size of the edo, this will not cover all the notes unless expanded out from 5L 2s to 12L 7s, reducing the range commensurately.

8
18
9
19
29
39
49
0
10
20
30
40
50
60
70
1
11
21
31
41
51
61
71
81
91
101
119
2
12
22
32
42
52
62
72
82
92
102
112
122
120
3
13
23
33
43
53
63
73
83
93
103
113
123
6
16
26
111
121
4
14
24
34
44
54
64
74
84
94
104
114
124
7
17
27
37
47
112
122
5
15
25
35
45
55
65
75
85
95
105
115
125
8
18
28
38
48
58
68
78
103
113
123
6
16
26
36
46
56
66
76
86
96
106
116
126
9
19
29
39
49
59
69
79
89
99
114
124
7
17
27
37
47
57
67
77
87
97
107
117
0
10
20
30
40
50
60
70
80
90
100
110
120
3
8
18
28
38
48
58
68
78
88
98
108
118
1
11
21
31
41
51
61
71
81
91
101
111
121
4
39
49
59
69
79
89
99
109
119
2
12
22
32
42
52
62
72
82
92
102
112
122
5
60
70
80
90
100
110
120
3
13
23
33
43
53
63
73
83
93
103
113
123
91
101
111
121
4
14
24
34
44
54
64
74
84
94
104
114
124
112
122
5
15
25
35
45
55
65
75
85
95
105
115
16
26
36
46
56
66
76
86
96
106
116
37
47
57
67
77
87
97
107
68
78
88
98
108
89
99

Würschmidt

The 3L 13s Würschmidt mapping covers the gamut with slightly greater range and puts harmonics closer together, although the step size is quite lopsided.

116
120
14
18
22
26
30
35
39
43
47
51
55
59
63
60
64
68
72
76
80
84
88
92
96
100
81
85
89
93
97
101
105
109
113
117
121
125
2
6
106
110
114
118
122
126
3
7
11
15
19
23
27
31
35
39
43
0
4
8
12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
25
29
33
37
41
45
49
53
57
61
65
69
73
77
81
85
89
93
97
101
105
109
113
46
50
54
58
62
66
70
74
78
82
86
90
94
98
102
106
110
114
118
122
126
3
7
11
15
19
75
79
83
87
91
95
99
103
107
111
115
119
123
0
4
8
12
16
20
24
28
32
36
40
44
48
52
56
108
112
116
120
124
1
5
9
13
17
21
25
29
33
37
41
45
49
53
57
61
65
69
73
77
81
18
22
26
30
34
38
42
46
50
54
58
62
66
70
74
78
82
86
90
94
98
102
106
51
55
59
63
67
71
75
79
83
87
91
95
99
103
107
111
115
119
123
0
88
92
96
100
104
108
112
116
120
124
1
5
9
13
17
21
25
121
125
2
6
10
14
18
22
26
30
34
38
42
46
31
35
39
43
47
51
55
59
63
67
71
64
68
72
76
80
84
88
92
101
105
109
113
117
7
11

You can compress this down to 3L 7s and still hit all the simple ratios, as well as keeping octaves closer to horizontal.

32
36
65
69
73
77
81
94
98
102
106
110
114
118
122
0
4
8
12
16
20
24
28
32
36
40
29
33
37
41
45
49
53
57
61
65
69
73
77
81
62
66
70
74
78
82
86
90
94
98
102
106
110
114
118
122
126
91
95
99
103
107
111
115
119
123
0
4
8
12
16
20
24
28
32
36
40
124
1
5
9
13
17
21
25
29
33
37
41
45
49
53
57
61
65
69
73
77
81
85
26
30
34
38
42
46
50
54
58
62
66
70
74
78
82
86
90
94
98
102
106
110
114
118
122
126
63
67
71
75
79
83
87
91
95
99
103
107
111
115
119
123
0
4
8
12
16
20
24
28
32
36
40
44
104
108
112
116
120
124
1
5
9
13
17
21
25
29
33
37
41
45
49
53
57
61
65
69
73
77
22
26
30
34
38
42
46
50
54
58
62
66
70
74
78
82
86
90
94
98
102
106
110
63
67
71
75
79
83
87
91
95
99
103
107
111
115
119
123
0
4
8
12
108
112
116
120
124
1
5
9
13
17
21
25
29
33
37
41
45
22
26
30
34
38
42
46
50
54
58
62
66
70
74
67
71
75
79
83
87
91
95
99
103
107
108
112
116
120
124
1
5
9
26
30
34
38
42
67
71


ViewTalkEditLumatone mappings 
124edo125edo126edoLumatone mapping for 127edo128edo129edo130edo