12L 9s
Jump to navigation
Jump to search
Scale structure
Step pattern
LLsLsLsLLsLsLsLLsLsLs
sLsLsLLsLsLsLLsLsLsLL
Equave
2/1 (1200.0¢)
Period
1\3 (400.0¢)
Generator size
Bright
5\21 to 3\12 (285.7¢ to 300.0¢)
Dark
1\12 to 2\21 (100.0¢ to 114.3¢)
TAMNAMS information
Descends from
3L 6s
Ancestor's step ratio range
3:2 to 2:1 (hyposoft)
Related MOS scales
Parent
9L 3s
Sister
9L 12s
Daughters
21L 12s, 12L 21s
Neutralized
3L 18s
2-Flought
33L 9s, 12L 30s
Equal tunings
Equalized (L:s = 1:1)
5\21 (285.7¢)
Supersoft (L:s = 4:3)
18\75 (288.0¢)
Soft (L:s = 3:2)
13\54 (288.9¢)
Semisoft (L:s = 5:3)
21\87 (289.7¢)
Basic (L:s = 2:1)
8\33 (290.9¢)
Semihard (L:s = 5:2)
19\78 (292.3¢)
Hard (L:s = 3:1)
11\45 (293.3¢)
Superhard (L:s = 4:1)
14\57 (294.7¢)
Collapsed (L:s = 1:0)
3\12 (300.0¢)
↖ 11L 8s | ↑ 12L 8s | 13L 8s ↗ |
← 11L 9s | 12L 9s | 13L 9s → |
↙ 11L 10s | ↓ 12L 10s | 13L 10s ↘ |
┌╥╥┬╥┬╥┬╥╥┬╥┬╥┬╥╥┬╥┬╥┬┐ │║║│║│║│║║│║│║│║║│║│║││ │││││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
sLsLsLLsLsLsLLsLsLsLL
12L 9s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 12 large steps and 9 small steps, with a period of 4 large steps and 3 small steps that repeats every 400.0¢, or 3 times every octave. 12L 9s is a grandchild scale of 3L 6s, expanding it by 12 tones. Generators that produce this scale range from 285.7¢ to 300¢, or from 100¢ to 114.3¢.
Modes
UDP | Cyclic order |
Step pattern |
---|---|---|
18|0(3) | 1 | LLsLsLsLLsLsLsLLsLsLs |
15|3(3) | 6 | LsLLsLsLsLLsLsLsLLsLs |
12|6(3) | 4 | LsLsLLsLsLsLLsLsLsLLs |
9|9(3) | 2 | LsLsLsLLsLsLsLLsLsLsL |
6|12(3) | 7 | sLLsLsLsLLsLsLsLLsLsL |
3|15(3) | 5 | sLsLLsLsLsLLsLsLsLLsL |
0|18(3) | 3 | sLsLsLLsLsLsLLsLsLsLL |
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0¢ to 57.1¢ |
Major 1-mosstep | M1ms | L | 57.1¢ to 100.0¢ | |
2-mosstep | Perfect 2-mosstep | P2ms | L + s | 100.0¢ to 114.3¢ |
Augmented 2-mosstep | A2ms | 2L | 114.3¢ to 200.0¢ | |
3-mosstep | Minor 3-mosstep | m3ms | L + 2s | 100.0¢ to 171.4¢ |
Major 3-mosstep | M3ms | 2L + s | 171.4¢ to 200.0¢ | |
4-mosstep | Minor 4-mosstep | m4ms | 2L + 2s | 200.0¢ to 228.6¢ |
Major 4-mosstep | M4ms | 3L + s | 228.6¢ to 300.0¢ | |
5-mosstep | Diminished 5-mosstep | d5ms | 2L + 3s | 200.0¢ to 285.7¢ |
Perfect 5-mosstep | P5ms | 3L + 2s | 285.7¢ to 300.0¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 3L + 3s | 300.0¢ to 342.9¢ |
Major 6-mosstep | M6ms | 4L + 2s | 342.9¢ to 400.0¢ | |
7-mosstep | Perfect 7-mosstep | P7ms | 4L + 3s | 400.0¢ |
8-mosstep | Minor 8-mosstep | m8ms | 4L + 4s | 400.0¢ to 457.1¢ |
Major 8-mosstep | M8ms | 5L + 3s | 457.1¢ to 500.0¢ | |
9-mosstep | Perfect 9-mosstep | P9ms | 5L + 4s | 500.0¢ to 514.3¢ |
Augmented 9-mosstep | A9ms | 6L + 3s | 514.3¢ to 600.0¢ | |
10-mosstep | Minor 10-mosstep | m10ms | 5L + 5s | 500.0¢ to 571.4¢ |
Major 10-mosstep | M10ms | 6L + 4s | 571.4¢ to 600.0¢ | |
11-mosstep | Minor 11-mosstep | m11ms | 6L + 5s | 600.0¢ to 628.6¢ |
Major 11-mosstep | M11ms | 7L + 4s | 628.6¢ to 700.0¢ | |
12-mosstep | Diminished 12-mosstep | d12ms | 6L + 6s | 600.0¢ to 685.7¢ |
Perfect 12-mosstep | P12ms | 7L + 5s | 685.7¢ to 700.0¢ | |
13-mosstep | Minor 13-mosstep | m13ms | 7L + 6s | 700.0¢ to 742.9¢ |
Major 13-mosstep | M13ms | 8L + 5s | 742.9¢ to 800.0¢ | |
14-mosstep | Perfect 14-mosstep | P14ms | 8L + 6s | 800.0¢ |
15-mosstep | Minor 15-mosstep | m15ms | 8L + 7s | 800.0¢ to 857.1¢ |
Major 15-mosstep | M15ms | 9L + 6s | 857.1¢ to 900.0¢ | |
16-mosstep | Perfect 16-mosstep | P16ms | 9L + 7s | 900.0¢ to 914.3¢ |
Augmented 16-mosstep | A16ms | 10L + 6s | 914.3¢ to 1000.0¢ | |
17-mosstep | Minor 17-mosstep | m17ms | 9L + 8s | 900.0¢ to 971.4¢ |
Major 17-mosstep | M17ms | 10L + 7s | 971.4¢ to 1000.0¢ | |
18-mosstep | Minor 18-mosstep | m18ms | 10L + 8s | 1000.0¢ to 1028.6¢ |
Major 18-mosstep | M18ms | 11L + 7s | 1028.6¢ to 1100.0¢ | |
19-mosstep | Diminished 19-mosstep | d19ms | 10L + 9s | 1000.0¢ to 1085.7¢ |
Perfect 19-mosstep | P19ms | 11L + 8s | 1085.7¢ to 1100.0¢ | |
20-mosstep | Minor 20-mosstep | m20ms | 11L + 9s | 1100.0¢ to 1142.9¢ |
Major 20-mosstep | M20ms | 12L + 8s | 1142.9¢ to 1200.0¢ | |
21-mosstep | Perfect 21-mosstep | P21ms | 12L + 9s | 1200.0¢ |
Scale tree
Generator(edo) | Cents | Step ratio | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
5\21 | 285.714 | 114.286 | 1:1 | 1.000 | Equalized 12L 9s | |||||
28\117 | 287.179 | 112.821 | 6:5 | 1.200 | ||||||
23\96 | 287.500 | 112.500 | 5:4 | 1.250 | ||||||
41\171 | 287.719 | 112.281 | 9:7 | 1.286 | ||||||
18\75 | 288.000 | 112.000 | 4:3 | 1.333 | Supersoft 12L 9s | |||||
49\204 | 288.235 | 111.765 | 11:8 | 1.375 | ||||||
31\129 | 288.372 | 111.628 | 7:5 | 1.400 | ||||||
44\183 | 288.525 | 111.475 | 10:7 | 1.429 | ||||||
13\54 | 288.889 | 111.111 | 3:2 | 1.500 | Soft 12L 9s | |||||
47\195 | 289.231 | 110.769 | 11:7 | 1.571 | ||||||
34\141 | 289.362 | 110.638 | 8:5 | 1.600 | ||||||
55\228 | 289.474 | 110.526 | 13:8 | 1.625 | ||||||
21\87 | 289.655 | 110.345 | 5:3 | 1.667 | Semisoft 12L 9s | |||||
50\207 | 289.855 | 110.145 | 12:7 | 1.714 | ||||||
29\120 | 290.000 | 110.000 | 7:4 | 1.750 | ||||||
37\153 | 290.196 | 109.804 | 9:5 | 1.800 | ||||||
8\33 | 290.909 | 109.091 | 2:1 | 2.000 | Basic 12L 9s Scales with tunings softer than this are proper | |||||
35\144 | 291.667 | 108.333 | 9:4 | 2.250 | ||||||
27\111 | 291.892 | 108.108 | 7:3 | 2.333 | ||||||
46\189 | 292.063 | 107.937 | 12:5 | 2.400 | ||||||
19\78 | 292.308 | 107.692 | 5:2 | 2.500 | Semihard 12L 9s | |||||
49\201 | 292.537 | 107.463 | 13:5 | 2.600 | ||||||
30\123 | 292.683 | 107.317 | 8:3 | 2.667 | ||||||
41\168 | 292.857 | 107.143 | 11:4 | 2.750 | ||||||
11\45 | 293.333 | 106.667 | 3:1 | 3.000 | Hard 12L 9s | |||||
36\147 | 293.878 | 106.122 | 10:3 | 3.333 | ||||||
25\102 | 294.118 | 105.882 | 7:2 | 3.500 | ||||||
39\159 | 294.340 | 105.660 | 11:3 | 3.667 | ||||||
14\57 | 294.737 | 105.263 | 4:1 | 4.000 | Superhard 12L 9s | |||||
31\126 | 295.238 | 104.762 | 9:2 | 4.500 | ||||||
17\69 | 295.652 | 104.348 | 5:1 | 5.000 | ||||||
20\81 | 296.296 | 103.704 | 6:1 | 6.000 | ||||||
3\12 | 300.000 | 100.000 | 1:0 | → ∞ | Collapsed 12L 9s |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |