13L 9s
Jump to navigation
Jump to search
Scale structure
Step pattern
LLsLsLLsLsLLsLsLLsLsLs
sLsLsLLsLsLLsLsLLsLsLL
Equave
2/1 (1200.0¢)
Period
2/1 (1200.0¢)
Generator size
Bright
5\22 to 3\13 (272.7¢ to 276.9¢)
Dark
10\13 to 17\22 (923.1¢ to 927.3¢)
TAMNAMS information
Descends from
4L 5s (gramitonic)
Ancestor's step ratio range
3:2 to 2:1 (hyposoft)
Related MOS scales
Parent
9L 4s
Sister
9L 13s
Daughters
22L 13s, 13L 22s
Neutralized
4L 18s
2-Flought
35L 9s, 13L 31s
Equal tunings
Equalized (L:s = 1:1)
5\22 (272.7¢)
Supersoft (L:s = 4:3)
18\79 (273.4¢)
Soft (L:s = 3:2)
13\57 (273.7¢)
Semisoft (L:s = 5:3)
21\92 (273.9¢)
Basic (L:s = 2:1)
8\35 (274.3¢)
Semihard (L:s = 5:2)
19\83 (274.7¢)
Hard (L:s = 3:1)
11\48 (275.0¢)
Superhard (L:s = 4:1)
14\61 (275.4¢)
Collapsed (L:s = 1:0)
3\13 (276.9¢)
↖ 12L 8s | ↑ 13L 8s | 14L 8s ↗ |
← 12L 9s | 13L 9s | 14L 9s → |
↙ 12L 10s | ↓ 13L 10s | 14L 10s ↘ |
┌╥╥┬╥┬╥╥┬╥┬╥╥┬╥┬╥╥┬╥┬╥┬┐ │║║│║│║║│║│║║│║│║║│║│║││ ││││││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
sLsLsLLsLsLLsLsLLsLsLL
13L 9s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 13 large steps and 9 small steps, repeating every octave. 13L 9s is a grandchild scale of 4L 5s, expanding it by 13 tones. Generators that produce this scale range from 272.7¢ to 276.9¢, or from 923.1¢ to 927.3¢.
Modes
UDP | Cyclic order |
Step pattern |
---|---|---|
21|0 | 1 | LLsLsLLsLsLLsLsLLsLsLs |
20|1 | 6 | LLsLsLLsLsLLsLsLsLLsLs |
19|2 | 11 | LLsLsLLsLsLsLLsLsLLsLs |
18|3 | 16 | LLsLsLsLLsLsLLsLsLLsLs |
17|4 | 21 | LsLLsLsLLsLsLLsLsLLsLs |
16|5 | 4 | LsLLsLsLLsLsLLsLsLsLLs |
15|6 | 9 | LsLLsLsLLsLsLsLLsLsLLs |
14|7 | 14 | LsLLsLsLsLLsLsLLsLsLLs |
13|8 | 19 | LsLsLLsLsLLsLsLLsLsLLs |
12|9 | 2 | LsLsLLsLsLLsLsLLsLsLsL |
11|10 | 7 | LsLsLLsLsLLsLsLsLLsLsL |
10|11 | 12 | LsLsLLsLsLsLLsLsLLsLsL |
9|12 | 17 | LsLsLsLLsLsLLsLsLLsLsL |
8|13 | 22 | sLLsLsLLsLsLLsLsLLsLsL |
7|14 | 5 | sLLsLsLLsLsLLsLsLsLLsL |
6|15 | 10 | sLLsLsLLsLsLsLLsLsLLsL |
5|16 | 15 | sLLsLsLsLLsLsLLsLsLLsL |
4|17 | 20 | sLsLLsLsLLsLsLLsLsLLsL |
3|18 | 3 | sLsLLsLsLLsLsLLsLsLsLL |
2|19 | 8 | sLsLLsLsLLsLsLsLLsLsLL |
1|20 | 13 | sLsLLsLsLsLLsLsLLsLsLL |
0|21 | 18 | sLsLsLLsLsLLsLsLLsLsLL |
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0¢ to 54.5¢ |
Major 1-mosstep | M1ms | L | 54.5¢ to 92.3¢ | |
2-mosstep | Minor 2-mosstep | m2ms | L + s | 92.3¢ to 109.1¢ |
Major 2-mosstep | M2ms | 2L | 109.1¢ to 184.6¢ | |
3-mosstep | Minor 3-mosstep | m3ms | L + 2s | 92.3¢ to 163.6¢ |
Major 3-mosstep | M3ms | 2L + s | 163.6¢ to 184.6¢ | |
4-mosstep | Minor 4-mosstep | m4ms | 2L + 2s | 184.6¢ to 218.2¢ |
Major 4-mosstep | M4ms | 3L + s | 218.2¢ to 276.9¢ | |
5-mosstep | Diminished 5-mosstep | d5ms | 2L + 3s | 184.6¢ to 272.7¢ |
Perfect 5-mosstep | P5ms | 3L + 2s | 272.7¢ to 276.9¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 3L + 3s | 276.9¢ to 327.3¢ |
Major 6-mosstep | M6ms | 4L + 2s | 327.3¢ to 369.2¢ | |
7-mosstep | Minor 7-mosstep | m7ms | 4L + 3s | 369.2¢ to 381.8¢ |
Major 7-mosstep | M7ms | 5L + 2s | 381.8¢ to 461.5¢ | |
8-mosstep | Minor 8-mosstep | m8ms | 4L + 4s | 369.2¢ to 436.4¢ |
Major 8-mosstep | M8ms | 5L + 3s | 436.4¢ to 461.5¢ | |
9-mosstep | Minor 9-mosstep | m9ms | 5L + 4s | 461.5¢ to 490.9¢ |
Major 9-mosstep | M9ms | 6L + 3s | 490.9¢ to 553.8¢ | |
10-mosstep | Minor 10-mosstep | m10ms | 5L + 5s | 461.5¢ to 545.5¢ |
Major 10-mosstep | M10ms | 6L + 4s | 545.5¢ to 553.8¢ | |
11-mosstep | Minor 11-mosstep | m11ms | 6L + 5s | 553.8¢ to 600.0¢ |
Major 11-mosstep | M11ms | 7L + 4s | 600.0¢ to 646.2¢ | |
12-mosstep | Minor 12-mosstep | m12ms | 7L + 5s | 646.2¢ to 654.5¢ |
Major 12-mosstep | M12ms | 8L + 4s | 654.5¢ to 738.5¢ | |
13-mosstep | Minor 13-mosstep | m13ms | 7L + 6s | 646.2¢ to 709.1¢ |
Major 13-mosstep | M13ms | 8L + 5s | 709.1¢ to 738.5¢ | |
14-mosstep | Minor 14-mosstep | m14ms | 8L + 6s | 738.5¢ to 763.6¢ |
Major 14-mosstep | M14ms | 9L + 5s | 763.6¢ to 830.8¢ | |
15-mosstep | Minor 15-mosstep | m15ms | 8L + 7s | 738.5¢ to 818.2¢ |
Major 15-mosstep | M15ms | 9L + 6s | 818.2¢ to 830.8¢ | |
16-mosstep | Minor 16-mosstep | m16ms | 9L + 7s | 830.8¢ to 872.7¢ |
Major 16-mosstep | M16ms | 10L + 6s | 872.7¢ to 923.1¢ | |
17-mosstep | Perfect 17-mosstep | P17ms | 10L + 7s | 923.1¢ to 927.3¢ |
Augmented 17-mosstep | A17ms | 11L + 6s | 927.3¢ to 1015.4¢ | |
18-mosstep | Minor 18-mosstep | m18ms | 10L + 8s | 923.1¢ to 981.8¢ |
Major 18-mosstep | M18ms | 11L + 7s | 981.8¢ to 1015.4¢ | |
19-mosstep | Minor 19-mosstep | m19ms | 11L + 8s | 1015.4¢ to 1036.4¢ |
Major 19-mosstep | M19ms | 12L + 7s | 1036.4¢ to 1107.7¢ | |
20-mosstep | Minor 20-mosstep | m20ms | 11L + 9s | 1015.4¢ to 1090.9¢ |
Major 20-mosstep | M20ms | 12L + 8s | 1090.9¢ to 1107.7¢ | |
21-mosstep | Minor 21-mosstep | m21ms | 12L + 9s | 1107.7¢ to 1145.5¢ |
Major 21-mosstep | M21ms | 13L + 8s | 1145.5¢ to 1200.0¢ | |
22-mosstep | Perfect 22-mosstep | P22ms | 13L + 9s | 1200.0¢ |
Scale tree
Generator(edo) | Cents | Step ratio | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
5\22 | 272.727 | 927.273 | 1:1 | 1.000 | Equalized 13L 9s | |||||
28\123 | 273.171 | 926.829 | 6:5 | 1.200 | ||||||
23\101 | 273.267 | 926.733 | 5:4 | 1.250 | ||||||
41\180 | 273.333 | 926.667 | 9:7 | 1.286 | ||||||
18\79 | 273.418 | 926.582 | 4:3 | 1.333 | Supersoft 13L 9s | |||||
49\215 | 273.488 | 926.512 | 11:8 | 1.375 | ||||||
31\136 | 273.529 | 926.471 | 7:5 | 1.400 | ||||||
44\193 | 273.575 | 926.425 | 10:7 | 1.429 | ||||||
13\57 | 273.684 | 926.316 | 3:2 | 1.500 | Soft 13L 9s | |||||
47\206 | 273.786 | 926.214 | 11:7 | 1.571 | ||||||
34\149 | 273.826 | 926.174 | 8:5 | 1.600 | ||||||
55\241 | 273.859 | 926.141 | 13:8 | 1.625 | ||||||
21\92 | 273.913 | 926.087 | 5:3 | 1.667 | Semisoft 13L 9s | |||||
50\219 | 273.973 | 926.027 | 12:7 | 1.714 | ||||||
29\127 | 274.016 | 925.984 | 7:4 | 1.750 | ||||||
37\162 | 274.074 | 925.926 | 9:5 | 1.800 | ||||||
8\35 | 274.286 | 925.714 | 2:1 | 2.000 | Basic 13L 9s Scales with tunings softer than this are proper | |||||
35\153 | 274.510 | 925.490 | 9:4 | 2.250 | ||||||
27\118 | 274.576 | 925.424 | 7:3 | 2.333 | ||||||
46\201 | 274.627 | 925.373 | 12:5 | 2.400 | ||||||
19\83 | 274.699 | 925.301 | 5:2 | 2.500 | Semihard 13L 9s | |||||
49\214 | 274.766 | 925.234 | 13:5 | 2.600 | ||||||
30\131 | 274.809 | 925.191 | 8:3 | 2.667 | ||||||
41\179 | 274.860 | 925.140 | 11:4 | 2.750 | ||||||
11\48 | 275.000 | 925.000 | 3:1 | 3.000 | Hard 13L 9s | |||||
36\157 | 275.159 | 924.841 | 10:3 | 3.333 | ||||||
25\109 | 275.229 | 924.771 | 7:2 | 3.500 | ||||||
39\170 | 275.294 | 924.706 | 11:3 | 3.667 | ||||||
14\61 | 275.410 | 924.590 | 4:1 | 4.000 | Superhard 13L 9s | |||||
31\135 | 275.556 | 924.444 | 9:2 | 4.500 | ||||||
17\74 | 275.676 | 924.324 | 5:1 | 5.000 | ||||||
20\87 | 275.862 | 924.138 | 6:1 | 6.000 | ||||||
3\13 | 276.923 | 923.077 | 1:0 | → ∞ | Collapsed 13L 9s |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |