214edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 213edo 214edo 215edo →
Prime factorization 2 × 107
Step size 5.60748¢ 
Fifth 125\214 (700.935¢)
Semitones (A1:m2) 19:17 (106.5¢ : 95.33¢)
Consistency limit 7
Distinct consistency limit 7

214 equal divisions of the octave (abbreviated 214edo or 214ed2), also called 214-tone equal temperament (214tet) or 214 equal temperament (214et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 214 equal parts of about 5.61 ¢ each. Each step represents a frequency ratio of 21/214, or the 214th root of 2.

Theory

214edo is (uniquely) consistent through the 7-odd-limit. The patent val for 214edo is 214 339 497 601 740 792], which tempers out the following commas: 78732/78125 (sensipent comma) and [-51 19 9 (untriton comma) in the 5-limit; 6144/6125 (porwell comma), 16875/16807 (mirkwai comma), 321489/320000 (varunisma), and [22 -1 -10 1 (quasiorwellisma) in the 7-limit; 540/539, 1375/1372, 5632/5625, in the 11-limit; 351/350, 847/845, 1001/1000, 1188/1183, 1573/1568, and 4096/4095 in the 13-limit. It can be viewed as a 2.3.5.13.19.23 subgroup temperament, as its approximations for lower prime limits are very poor but this makes 214edo an exceptionally xenharmonic tuning.

Prime harmonics

Approximation of prime harmonics in 214edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 -1.02 +0.60 +1.27 -1.79 +0.59 +1.59 -0.32 -0.24 +2.20 -1.11
Relative (%) +0.0 -18.2 +10.7 +22.6 -31.8 +10.6 +28.3 -5.6 -4.2 +39.2 -19.8
Steps
(reduced)
214
(0)
339
(125)
497
(69)
601
(173)
740
(98)
792
(150)
875
(19)
909
(53)
968
(112)
1040
(184)
1060
(204)

Subsets and supersets

Since 214 factors into 2 × 107, 214edo contains 2edo and 107edo as its subsets.

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [-339 214 [214 339]] +0.3219 0.3220 5.74
2.3.5 78732/78125, [-49 28 2 [214 339 497]] +0.1281 0.3797 6.77
2.3.5.7 6144/6125, 16875/16807, 78732/78125 [214 339 497 601]] −0.0169 0.4137 7.38
2.3.5.7.11 540/539, 1375/1372, 5632/5625, 72171/71680 [214 339 497 601 740]] +0.0897 0.4270 7.61
2.3.5.7.11.13 351/350, 540/539, 847/845, 1375/1372, 4096/4095 [214 339 497 601 740 792]] +0.0480 0.4008 7.15
2.3.5.7.11.13.17 351/350, 540/539, 715/714, 847/845, 936/935, 4096/4095 [214 339 497 601 740 792 875]] −0.0144 0.4012 7.15

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
ratio*
Temperaments
1 27\214 151.40 12/11 Browser
1 69\214 386.92 5/4 Grendel
1 79\214 442.99 162/125 Sensipent
1 105\214 588.79 7/5 Aufo
2 28\214 157.01 35/32 Bison (214e)
2 29\214 162.62 1125/1024 Kwazy

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct