107edo
← 106edo | 107edo | 108edo → |
107 equal divisions of the octave (abbreviated 107edo or 107ed2), also called 107-tone equal temperament (107tet) or 107 equal temperament (107et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 107 equal parts of about 11.2 ¢ each. Each step represents a frequency ratio of 21/107, or the 107th root of 2.
Theory
107edo is inconsistent to the 5-odd-limit and higher limits, and harmonics 3, 5, and 7 are about halfway between its steps. Either the 2.9.5.7 or 2.9.15.21 subgroup can be used. For the full 7-limit, it has four possible mappings: ⟨107 170 248 300] (patent val), ⟨107 169 248 300] (107b), ⟨107 170 249 300] (107c), and ⟨107 170 249 301] (107cd).
Using the patent val, it tempers out 3125/3072 (magic comma) and [28 -22 3⟩ in the 5-limit; 1029/1024, 2240/2187, and 3125/3087 in the 7-limit; 100/99, 1232/1215, and 1331/1323 in the 11-limit.
Using the 107cd val, it tempers out 1728/1715, 4000/3969, and 28672/28125 in the 7-limit; 121/120, 896/891, 1375/1372, and 3168/3125 in the 11-limit.
Using the 107c val, it tempers out 1638400/1594323 (immunity comma) and 1990656/1953125 (valentine comma) in the 5-limit; 126/125, 1029/1024, and 307328/295245 in the 7-limit; 121/120, 176/175, 441/440, and 184877/177147 in the 11-limit.
Using the 107b val, it tempers out 81/80 (syntonic comma) and [-61 -1 27⟩; in the 5-limit; 2401/2400, 2430/2401, and 234375/229376 in the 7-limit; 385/384, 1350/1331, 1375/1372, and 1944/1925 in the 11-limit.
Odd harmonics
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +4.59 | -5.01 | -4.34 | -2.04 | -1.79 | +0.59 | -0.42 | -4.02 | +5.29 | +0.25 | -0.24 |
Relative (%) | +40.9 | -44.6 | -38.7 | -18.2 | -15.9 | +5.3 | -3.7 | -35.9 | +47.2 | +2.2 | -2.1 | |
Steps (reduced) |
170 (63) |
248 (34) |
300 (86) |
339 (18) |
370 (49) |
396 (75) |
418 (97) |
437 (9) |
455 (27) |
470 (42) |
484 (56) |
Subsets and supersets
107edo is the 28th prime edo, following 103edo and before 109edo. 214edo, which doubles it, provides correction for the approximation to harmonics 3, 5, and 7.
Intervals
Steps | Cents | Approximate Ratios | Ups and Downs Notation (Dual Flat Fifth 62\107) |
Ups and Downs Notation (Dual Sharp Fifth 63\107) |
---|---|---|---|---|
0 | 0 | 1/1 | D | D |
1 | 11.215 | ^D, v4E♭♭ | ^D, v5E♭ | |
2 | 22.43 | 65/64 | ^^D, v3E♭♭ | ^^D, v4E♭ |
3 | 33.645 | 50/49, 56/55 | ^3D, vvE♭♭ | ^3D, v3E♭ |
4 | 44.86 | 77/75 | ^4D, vE♭♭ | ^4D, vvE♭ |
5 | 56.075 | 33/32 | ^5D, E♭♭ | ^5D, vE♭ |
6 | 67.29 | 80/77 | D♯, v5E♭ | ^6D, E♭ |
7 | 78.505 | 22/21 | ^D♯, v4E♭ | ^7D, v12E |
8 | 89.72 | ^^D♯, v3E♭ | ^8D, v11E | |
9 | 100.935 | ^3D♯, vvE♭ | ^9D, v10E | |
10 | 112.15 | 16/15 | ^4D♯, vE♭ | ^10D, v9E |
11 | 123.364 | 15/14 | ^5D♯, E♭ | ^11D, v8E |
12 | 134.579 | 13/12 | D𝄪, v5E | ^12D, v7E |
13 | 145.794 | ^D𝄪, v4E | D♯, v6E | |
14 | 157.009 | ^^D𝄪, v3E | ^D♯, v5E | |
15 | 168.224 | 11/10 | ^3D𝄪, vvE | ^^D♯, v4E |
16 | 179.439 | ^4D𝄪, vE | ^3D♯, v3E | |
17 | 190.654 | E | ^4D♯, vvE | |
18 | 201.869 | 55/49 | ^E, v4F♭ | ^5D♯, vE |
19 | 213.084 | ^^E, v3F♭ | E | |
20 | 224.299 | ^3E, vvF♭ | ^E, v5F | |
21 | 235.514 | 8/7 | ^4E, vF♭ | ^^E, v4F |
22 | 246.729 | 15/13, 52/45 | ^5E, F♭ | ^3E, v3F |
23 | 257.944 | 65/56 | E♯, v5F | ^4E, vvF |
24 | 269.159 | ^E♯, v4F | ^5E, vF | |
25 | 280.374 | ^^E♯, v3F | F | |
26 | 291.589 | 13/11, 77/65 | ^3E♯, vvF | ^F, v5G♭ |
27 | 302.804 | ^4E♯, vF | ^^F, v4G♭ | |
28 | 314.019 | F | ^3F, v3G♭ | |
29 | 325.234 | ^F, v4G♭♭ | ^4F, vvG♭ | |
30 | 336.449 | 63/52 | ^^F, v3G♭♭ | ^5F, vG♭ |
31 | 347.664 | 49/40 | ^3F, vvG♭♭ | ^6F, G♭ |
32 | 358.879 | 16/13 | ^4F, vG♭♭ | ^7F, v12G |
33 | 370.093 | 26/21 | ^5F, G♭♭ | ^8F, v11G |
34 | 381.308 | F♯, v5G♭ | ^9F, v10G | |
35 | 392.523 | ^F♯, v4G♭ | ^10F, v9G | |
36 | 403.738 | ^^F♯, v3G♭ | ^11F, v8G | |
37 | 414.953 | 14/11, 33/26 | ^3F♯, vvG♭ | ^12F, v7G |
38 | 426.168 | ^4F♯, vG♭ | F♯, v6G | |
39 | 437.383 | ^5F♯, G♭ | ^F♯, v5G | |
40 | 448.598 | F𝄪, v5G | ^^F♯, v4G | |
41 | 459.813 | ^F𝄪, v4G | ^3F♯, v3G | |
42 | 471.028 | 21/16 | ^^F𝄪, v3G | ^4F♯, vvG |
43 | 482.243 | ^3F𝄪, vvG | ^5F♯, vG | |
44 | 493.458 | 65/49 | ^4F𝄪, vG | G |
45 | 504.673 | 75/56 | G | ^G, v5A♭ |
46 | 515.888 | ^G, v4A♭♭ | ^^G, v4A♭ | |
47 | 527.103 | ^^G, v3A♭♭ | ^3G, v3A♭ | |
48 | 538.318 | 15/11 | ^3G, vvA♭♭ | ^4G, vvA♭ |
49 | 549.533 | 11/8 | ^4G, vA♭♭ | ^5G, vA♭ |
50 | 560.748 | ^5G, A♭♭ | ^6G, A♭ | |
51 | 571.963 | G♯, v5A♭ | ^7G, v12A | |
52 | 583.178 | 7/5 | ^G♯, v4A♭ | ^8G, v11A |
53 | 594.393 | 45/32 | ^^G♯, v3A♭ | ^9G, v10A |
54 | 605.607 | 64/45 | ^3G♯, vvA♭ | ^10G, v9A |
55 | 616.822 | 10/7 | ^4G♯, vA♭ | ^11G, v8A |
56 | 628.037 | ^5G♯, A♭ | ^12G, v7A | |
57 | 639.252 | G𝄪, v5A | G♯, v6A | |
58 | 650.467 | 16/11 | ^G𝄪, v4A | ^G♯, v5A |
59 | 661.682 | 22/15 | ^^G𝄪, v3A | ^^G♯, v4A |
60 | 672.897 | 65/44 | ^3G𝄪, vvA | ^3G♯, v3A |
61 | 684.112 | ^4G𝄪, vA | ^4G♯, vvA | |
62 | 695.327 | A | ^5G♯, vA | |
63 | 706.542 | ^A, v4B♭♭ | A | |
64 | 717.757 | ^^A, v3B♭♭ | ^A, v5B♭ | |
65 | 728.972 | 32/21 | ^3A, vvB♭♭ | ^^A, v4B♭ |
66 | 740.187 | 75/49 | ^4A, vB♭♭ | ^3A, v3B♭ |
67 | 751.402 | 77/50 | ^5A, B♭♭ | ^4A, vvB♭ |
68 | 762.617 | A♯, v5B♭ | ^5A, vB♭ | |
69 | 773.832 | ^A♯, v4B♭ | ^6A, B♭ | |
70 | 785.047 | 11/7, 52/33 | ^^A♯, v3B♭ | ^7A, v12B |
71 | 796.262 | ^3A♯, vvB♭ | ^8A, v11B | |
72 | 807.477 | ^4A♯, vB♭ | ^9A, v10B | |
73 | 818.692 | ^5A♯, B♭ | ^10A, v9B | |
74 | 829.907 | 21/13 | A𝄪, v5B | ^11A, v8B |
75 | 841.121 | 13/8 | ^A𝄪, v4B | ^12A, v7B |
76 | 852.336 | 80/49 | ^^A𝄪, v3B | A♯, v6B |
77 | 863.551 | ^3A𝄪, vvB | ^A♯, v5B | |
78 | 874.766 | ^4A𝄪, vB | ^^A♯, v4B | |
79 | 885.981 | B | ^3A♯, v3B | |
80 | 897.196 | ^B, v4C♭ | ^4A♯, vvB | |
81 | 908.411 | 22/13 | ^^B, v3C♭ | ^5A♯, vB |
82 | 919.626 | 75/44 | ^3B, vvC♭ | B |
83 | 930.841 | ^4B, vC♭ | ^B, v5C | |
84 | 942.056 | ^5B, C♭ | ^^B, v4C | |
85 | 953.271 | 26/15, 45/26 | B♯, v5C | ^3B, v3C |
86 | 964.486 | 7/4 | ^B♯, v4C | ^4B, vvC |
87 | 975.701 | ^^B♯, v3C | ^5B, vC | |
88 | 986.916 | ^3B♯, vvC | C | |
89 | 998.131 | ^4B♯, vC | ^C, v5D♭ | |
90 | 1009.346 | C | ^^C, v4D♭ | |
91 | 1020.561 | ^C, v4D♭♭ | ^3C, v3D♭ | |
92 | 1031.776 | 20/11 | ^^C, v3D♭♭ | ^4C, vvD♭ |
93 | 1042.991 | ^3C, vvD♭♭ | ^5C, vD♭ | |
94 | 1054.206 | ^4C, vD♭♭ | ^6C, D♭ | |
95 | 1065.421 | 24/13 | ^5C, D♭♭ | ^7C, v12D |
96 | 1076.636 | 28/15 | C♯, v5D♭ | ^8C, v11D |
97 | 1087.85 | 15/8 | ^C♯, v4D♭ | ^9C, v10D |
98 | 1099.065 | ^^C♯, v3D♭ | ^10C, v9D | |
99 | 1110.28 | ^3C♯, vvD♭ | ^11C, v8D | |
100 | 1121.495 | 21/11 | ^4C♯, vD♭ | ^12C, v7D |
101 | 1132.71 | 77/40 | ^5C♯, D♭ | C♯, v6D |
102 | 1143.925 | 64/33 | C𝄪, v5D | ^C♯, v5D |
103 | 1155.14 | ^C𝄪, v4D | ^^C♯, v4D | |
104 | 1166.355 | 49/25, 55/28 | ^^C𝄪, v3D | ^3C♯, v3D |
105 | 1177.57 | ^3C𝄪, vvD | ^4C♯, vvD | |
106 | 1188.785 | ^4C𝄪, vD | ^5C♯, vD | |
107 | 1200 | 2/1 | D | D |
Regular temperament properties
Subgroup | Comma List | Mapping | Optimal 8ve Stretch (¢) |
Tuning Error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.9 | [339 -107⟩ | [⟨107 339]] | +0.322 | 0.322 | 2.87 |
2.9.5 | 9765625/9565938, [-34 10 1⟩ | [⟨107 339 248]] | +0.933 | 0.904 | 8.06 |
2.9.5.7 | 225/224, 84035/82944, [14 -6 7 -4⟩ | [⟨107 339 248 300]] | +1.087 | 0.827 | 7.37 |
2.9.5.7.11 | 225/224, 441/440, 26411/26244, 161280/161051 | [⟨107 339 248 300 370]] | +0.973 | 0.774 | 6.90 |
2.9.5.7.11.13 | 225/224, 325/324, 441/440, 847/845, 24500/24167 | [⟨107 339 248 300 370 396]] | +0.783 | 0.823 | 7.33 |
2.9.5.7.11.13.17 | 170/169, 225/224, 325/324, 441/440, 847/845, 2000/1989 | [⟨107 339 248 300 370 396 437]] | +0.812 | 0.765 | 6.82 |