108edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 107edo108edo109edo →
Prime factorization 22 × 33
Step size 11.1111¢ 
Fifth 63\108 (700¢) (→7\12)
Semitones (A1:m2) 9:9 (100¢ : 100¢)
Consistency limit 7
Distinct consistency limit 7

108 equal divisions of the octave (abbreviated 108edo or 108ed2), also called 108-tone equal temperament (108tet) or 108 equal temperament (108et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 108 equal parts of about 11.1 ¢ each. Each step represents a frequency ratio of 21/108, or the 108th root of 2.

Theory

108et tempers out the Pythagorean comma in the 3-limit and 1990656/1953125 (valentine comma) in the 5-limit. In the 7-limit it tempers out 126/125 and 1029/1024, supporting valentine, and making for a good tuning for it and for starling temperament, the planar temperament tempering out 126/125. In the 11-limit the patent val tempers out 540/539 and 1344/1331, and the 108e val tempers out 121/120, 176/175, 385/384, and 441/440, supporting 11-limit valentine for which it is again a good tuning.

108edo is the smallest 12n-edo which offers a decent alternative fifth to 12edo's fifth, that is 27edo's superpyth fifth.

Prime harmonics

Approximation of prime harmonics in 108edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 -1.96 +2.58 -2.16 +4.24 +3.92 -4.96 +2.49 +5.06 +3.76 -0.59
Relative (%) +0.0 -17.6 +23.2 -19.4 +38.1 +35.3 -44.6 +22.4 +45.5 +33.8 -5.3
Steps
(reduced)
108
(0)
171
(63)
251
(35)
303
(87)
374
(50)
400
(76)
441
(9)
459
(27)
489
(57)
525
(93)
535
(103)

Subsets and supersets

Since 108 factors into 22 × 33, 108edo has subset edos 2, 3, 4, 6, 9, 12, 18, 27, 36, and 54.

Intervals

Steps Cents Approximate Ratios Ups and Downs Notation
0 0 1/1 D
1 11.111 ^D, v8E♭
2 22.222 66/65, 78/77 ^^D, v7E♭
3 33.333 49/48 ^3D, v6E♭
4 44.444 36/35, 40/39, 77/75 ^4D, v5E♭
5 55.556 33/32 ^5D, v4E♭
6 66.667 26/25, 28/27, 80/77 ^6D, v3E♭
7 77.778 ^7D, vvE♭
8 88.889 ^8D, vE♭
9 100 35/33, 55/52 D♯, E♭
10 111.111 16/15 ^D♯, v8E
11 122.222 15/14 ^^D♯, v7E
12 133.333 ^3D♯, v6E
13 144.444 49/45 ^4D♯, v5E
14 155.556 35/32 ^5D♯, v4E
15 166.667 11/10, 54/49 ^6D♯, v3E
16 177.778 ^7D♯, vvE
17 188.889 39/35 ^8D♯, vE
18 200 9/8 E
19 211.111 44/39 ^E, v8F
20 222.222 25/22 ^^E, v7F
21 233.333 8/7 ^3E, v6F
22 244.444 15/13 ^4E, v5F
23 255.556 ^5E, v4F
24 266.667 7/6 ^6E, v3F
25 277.778 75/64 ^7E, vvF
26 288.889 13/11, 33/28, 77/65 ^8E, vF
27 300 F
28 311.111 ^F, v8G♭
29 322.222 77/64 ^^F, v7G♭
30 333.333 40/33 ^3F, v6G♭
31 344.444 39/32 ^4F, v5G♭
32 355.556 16/13 ^5F, v4G♭
33 366.667 ^6F, v3G♭
34 377.778 56/45 ^7F, vvG♭
35 388.889 5/4 ^8F, vG♭
36 400 44/35 F♯, G♭
37 411.111 33/26 ^F♯, v8G
38 422.222 ^^F♯, v7G
39 433.333 9/7, 50/39, 77/60 ^3F♯, v6G
40 444.444 ^4F♯, v5G
41 455.556 13/10 ^5F♯, v4G
42 466.667 21/16, 64/49 ^6F♯, v3G
43 477.778 33/25 ^7F♯, vvG
44 488.889 ^8F♯, vG
45 500 4/3 G
46 511.111 35/26 ^G, v8A♭
47 522.222 ^^G, v7A♭
48 533.333 15/11, 49/36 ^3G, v6A♭
49 544.444 48/35 ^4G, v5A♭
50 555.556 11/8 ^5G, v4A♭
51 566.667 ^6G, v3A♭
52 577.778 39/28 ^7G, vvA♭
53 588.889 45/32 ^8G, vA♭
54 600 G♯, A♭
55 611.111 64/45 ^G♯, v8A
56 622.222 56/39 ^^G♯, v7A
57 633.333 75/52 ^3G♯, v6A
58 644.444 16/11 ^4G♯, v5A
59 655.556 35/24 ^5G♯, v4A
60 666.667 22/15, 72/49 ^6G♯, v3A
61 677.778 65/44, 77/52 ^7G♯, vvA
62 688.889 52/35 ^8G♯, vA
63 700 3/2 A
64 711.111 ^A, v8B♭
65 722.222 50/33 ^^A, v7B♭
66 733.333 32/21, 49/32 ^3A, v6B♭
67 744.444 20/13, 77/50 ^4A, v5B♭
68 755.556 ^5A, v4B♭
69 766.667 14/9, 39/25 ^6A, v3B♭
70 777.778 ^7A, vvB♭
71 788.889 52/33 ^8A, vB♭
72 800 35/22 A♯, B♭
73 811.111 8/5 ^A♯, v8B
74 822.222 45/28, 77/48 ^^A♯, v7B
75 833.333 ^3A♯, v6B
76 844.444 13/8 ^4A♯, v5B
77 855.556 64/39 ^5A♯, v4B
78 866.667 33/20, 81/49 ^6A♯, v3B
79 877.778 ^7A♯, vvB
80 888.889 ^8A♯, vB
81 900 B
82 911.111 22/13, 56/33 ^B, v8C
83 922.222 75/44 ^^B, v7C
84 933.333 12/7, 77/45 ^3B, v6C
85 944.444 ^4B, v5C
86 955.556 26/15 ^5B, v4C
87 966.667 7/4 ^6B, v3C
88 977.778 44/25 ^7B, vvC
89 988.889 39/22 ^8B, vC
90 1000 16/9 C
91 1011.111 70/39 ^C, v8D♭
92 1022.222 ^^C, v7D♭
93 1033.333 20/11, 49/27 ^3C, v6D♭
94 1044.444 64/35 ^4C, v5D♭
95 1055.556 ^5C, v4D♭
96 1066.667 ^6C, v3D♭
97 1077.778 28/15 ^7C, vvD♭
98 1088.889 15/8 ^8C, vD♭
99 1100 66/35 C♯, D♭
100 1111.111 ^C♯, v8D
101 1122.222 ^^C♯, v7D
102 1133.333 25/13, 27/14, 77/40 ^3C♯, v6D
103 1144.444 64/33 ^4C♯, v5D
104 1155.556 35/18, 39/20 ^5C♯, v4D
105 1166.667 ^6C♯, v3D
106 1177.778 65/33, 77/39 ^7C♯, vvD
107 1188.889 ^8C♯, vD
108 1200 2/1 D