14L 8s
Jump to navigation
Jump to search
Scale structure
Step pattern
LLsLLsLLsLsLLsLLsLLsLs
sLsLLsLLsLLsLsLLsLLsLL
Equave
2/1 (1200.0¢)
Period
1\2 (600.0¢)
Generator size
Bright
3\22 to 2\14 (163.6¢ to 171.4¢)
Dark
5\14 to 8\22 (428.6¢ to 436.4¢)
TAMNAMS information
Descends from
6L 2s (ekic)
Ancestor's step ratio range
3:2 to 2:1 (hyposoft)
Related MOS scales
Parent
8L 6s
Sister
8L 14s
Daughters
22L 14s, 14L 22s
Neutralized
6L 16s
2-Flought
36L 8s, 14L 30s
Equal tunings
Equalized (L:s = 1:1)
3\22 (163.6¢)
Supersoft (L:s = 4:3)
11\80 (165.0¢)
Soft (L:s = 3:2)
8\58 (165.5¢)
Semisoft (L:s = 5:3)
13\94 (166.0¢)
Basic (L:s = 2:1)
5\36 (166.7¢)
Semihard (L:s = 5:2)
12\86 (167.4¢)
Hard (L:s = 3:1)
7\50 (168.0¢)
Superhard (L:s = 4:1)
9\64 (168.8¢)
Collapsed (L:s = 1:0)
2\14 (171.4¢)
↖ 13L 7s | ↑ 14L 7s | 15L 7s ↗ |
← 13L 8s | 14L 8s | 15L 8s → |
↙ 13L 9s | ↓ 14L 9s | 15L 9s ↘ |
┌╥╥┬╥╥┬╥╥┬╥┬╥╥┬╥╥┬╥╥┬╥┬┐ │║║│║║│║║│║│║║│║║│║║│║││ ││││││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
sLsLLsLLsLLsLsLLsLLsLL
14L 8s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 14 large steps and 8 small steps, with a period of 7 large steps and 4 small steps that repeats every 600.0¢, or twice every octave. 14L 8s is a grandchild scale of 6L 2s, expanding it by 14 tones. Generators that produce this scale range from 163.6¢ to 171.4¢, or from 428.6¢ to 436.4¢.
The most notable harmonic entropy minima for this MOS is echidna.
Modes
UDP | Cyclic order |
Step pattern |
---|---|---|
20|0(2) | 1 | LLsLLsLLsLsLLsLLsLLsLs |
18|2(2) | 4 | LLsLLsLsLLsLLsLLsLsLLs |
16|4(2) | 7 | LLsLsLLsLLsLLsLsLLsLLs |
14|6(2) | 10 | LsLLsLLsLLsLsLLsLLsLLs |
12|8(2) | 2 | LsLLsLLsLsLLsLLsLLsLsL |
10|10(2) | 5 | LsLLsLsLLsLLsLLsLsLLsL |
8|12(2) | 8 | LsLsLLsLLsLLsLsLLsLLsL |
6|14(2) | 11 | sLLsLLsLLsLsLLsLLsLLsL |
4|16(2) | 3 | sLLsLLsLsLLsLLsLLsLsLL |
2|18(2) | 6 | sLLsLsLLsLLsLLsLsLLsLL |
0|20(2) | 9 | sLsLLsLLsLLsLsLLsLLsLL |
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0¢ to 54.5¢ |
Major 1-mosstep | M1ms | L | 54.5¢ to 85.7¢ | |
2-mosstep | Minor 2-mosstep | m2ms | L + s | 85.7¢ to 109.1¢ |
Major 2-mosstep | M2ms | 2L | 109.1¢ to 171.4¢ | |
3-mosstep | Diminished 3-mosstep | d3ms | L + 2s | 85.7¢ to 163.6¢ |
Perfect 3-mosstep | P3ms | 2L + s | 163.6¢ to 171.4¢ | |
4-mosstep | Minor 4-mosstep | m4ms | 2L + 2s | 171.4¢ to 218.2¢ |
Major 4-mosstep | M4ms | 3L + s | 218.2¢ to 257.1¢ | |
5-mosstep | Minor 5-mosstep | m5ms | 3L + 2s | 257.1¢ to 272.7¢ |
Major 5-mosstep | M5ms | 4L + s | 272.7¢ to 342.9¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 3L + 3s | 257.1¢ to 327.3¢ |
Major 6-mosstep | M6ms | 4L + 2s | 327.3¢ to 342.9¢ | |
7-mosstep | Minor 7-mosstep | m7ms | 4L + 3s | 342.9¢ to 381.8¢ |
Major 7-mosstep | M7ms | 5L + 2s | 381.8¢ to 428.6¢ | |
8-mosstep | Perfect 8-mosstep | P8ms | 5L + 3s | 428.6¢ to 436.4¢ |
Augmented 8-mosstep | A8ms | 6L + 2s | 436.4¢ to 514.3¢ | |
9-mosstep | Minor 9-mosstep | m9ms | 5L + 4s | 428.6¢ to 490.9¢ |
Major 9-mosstep | M9ms | 6L + 3s | 490.9¢ to 514.3¢ | |
10-mosstep | Minor 10-mosstep | m10ms | 6L + 4s | 514.3¢ to 545.5¢ |
Major 10-mosstep | M10ms | 7L + 3s | 545.5¢ to 600.0¢ | |
11-mosstep | Perfect 11-mosstep | P11ms | 7L + 4s | 600.0¢ |
12-mosstep | Minor 12-mosstep | m12ms | 7L + 5s | 600.0¢ to 654.5¢ |
Major 12-mosstep | M12ms | 8L + 4s | 654.5¢ to 685.7¢ | |
13-mosstep | Minor 13-mosstep | m13ms | 8L + 5s | 685.7¢ to 709.1¢ |
Major 13-mosstep | M13ms | 9L + 4s | 709.1¢ to 771.4¢ | |
14-mosstep | Diminished 14-mosstep | d14ms | 8L + 6s | 685.7¢ to 763.6¢ |
Perfect 14-mosstep | P14ms | 9L + 5s | 763.6¢ to 771.4¢ | |
15-mosstep | Minor 15-mosstep | m15ms | 9L + 6s | 771.4¢ to 818.2¢ |
Major 15-mosstep | M15ms | 10L + 5s | 818.2¢ to 857.1¢ | |
16-mosstep | Minor 16-mosstep | m16ms | 10L + 6s | 857.1¢ to 872.7¢ |
Major 16-mosstep | M16ms | 11L + 5s | 872.7¢ to 942.9¢ | |
17-mosstep | Minor 17-mosstep | m17ms | 10L + 7s | 857.1¢ to 927.3¢ |
Major 17-mosstep | M17ms | 11L + 6s | 927.3¢ to 942.9¢ | |
18-mosstep | Minor 18-mosstep | m18ms | 11L + 7s | 942.9¢ to 981.8¢ |
Major 18-mosstep | M18ms | 12L + 6s | 981.8¢ to 1028.6¢ | |
19-mosstep | Perfect 19-mosstep | P19ms | 12L + 7s | 1028.6¢ to 1036.4¢ |
Augmented 19-mosstep | A19ms | 13L + 6s | 1036.4¢ to 1114.3¢ | |
20-mosstep | Minor 20-mosstep | m20ms | 12L + 8s | 1028.6¢ to 1090.9¢ |
Major 20-mosstep | M20ms | 13L + 7s | 1090.9¢ to 1114.3¢ | |
21-mosstep | Minor 21-mosstep | m21ms | 13L + 8s | 1114.3¢ to 1145.5¢ |
Major 21-mosstep | M21ms | 14L + 7s | 1145.5¢ to 1200.0¢ | |
22-mosstep | Perfect 22-mosstep | P22ms | 14L + 8s | 1200.0¢ |
Scale tree
Generator(edo) | Cents | Step ratio | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
3\22 | 163.636 | 436.364 | 1:1 | 1.000 | Equalized 14L 8s | |||||
17\124 | 164.516 | 435.484 | 6:5 | 1.200 | ||||||
14\102 | 164.706 | 435.294 | 5:4 | 1.250 | ||||||
25\182 | 164.835 | 435.165 | 9:7 | 1.286 | ||||||
11\80 | 165.000 | 435.000 | 4:3 | 1.333 | Supersoft 14L 8s | |||||
30\218 | 165.138 | 434.862 | 11:8 | 1.375 | ||||||
19\138 | 165.217 | 434.783 | 7:5 | 1.400 | ||||||
27\196 | 165.306 | 434.694 | 10:7 | 1.429 | ||||||
8\58 | 165.517 | 434.483 | 3:2 | 1.500 | Soft 14L 8s | |||||
29\210 | 165.714 | 434.286 | 11:7 | 1.571 | ||||||
21\152 | 165.789 | 434.211 | 8:5 | 1.600 | ||||||
34\246 | 165.854 | 434.146 | 13:8 | 1.625 | ||||||
13\94 | 165.957 | 434.043 | 5:3 | 1.667 | Semisoft 14L 8s | |||||
31\224 | 166.071 | 433.929 | 12:7 | 1.714 | ||||||
18\130 | 166.154 | 433.846 | 7:4 | 1.750 | ||||||
23\166 | 166.265 | 433.735 | 9:5 | 1.800 | ||||||
5\36 | 166.667 | 433.333 | 2:1 | 2.000 | Basic 14L 8s Scales with tunings softer than this are proper | |||||
22\158 | 167.089 | 432.911 | 9:4 | 2.250 | ||||||
17\122 | 167.213 | 432.787 | 7:3 | 2.333 | ||||||
29\208 | 167.308 | 432.692 | 12:5 | 2.400 | ||||||
12\86 | 167.442 | 432.558 | 5:2 | 2.500 | Semihard 14L 8s | |||||
31\222 | 167.568 | 432.432 | 13:5 | 2.600 | ||||||
19\136 | 167.647 | 432.353 | 8:3 | 2.667 | ||||||
26\186 | 167.742 | 432.258 | 11:4 | 2.750 | ||||||
7\50 | 168.000 | 432.000 | 3:1 | 3.000 | Hard 14L 8s | |||||
23\164 | 168.293 | 431.707 | 10:3 | 3.333 | ||||||
16\114 | 168.421 | 431.579 | 7:2 | 3.500 | ||||||
25\178 | 168.539 | 431.461 | 11:3 | 3.667 | ||||||
9\64 | 168.750 | 431.250 | 4:1 | 4.000 | Superhard 14L 8s | |||||
20\142 | 169.014 | 430.986 | 9:2 | 4.500 | ||||||
11\78 | 169.231 | 430.769 | 5:1 | 5.000 | ||||||
13\92 | 169.565 | 430.435 | 6:1 | 6.000 | ||||||
2\14 | 171.429 | 428.571 | 1:0 | → ∞ | Collapsed 14L 8s |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |