222edo
Jump to navigation
Jump to search
Prime factorization
2 × 3 × 37
Step size
5.40541¢
Fifth
130\222 (702.703¢) (→65\111)
Semitones (A1:m2)
22:16 (118.9¢ : 86.49¢)
Consistency limit
3
Distinct consistency limit
3
← 221edo | 222edo | 223edo → |
222 equal divisions of the octave (222edo), or 222-tone equal temperament (222tet), 222 equal temperament (222et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 222 equal parts of about 5.41 ¢ each.
Theory
222edo is strongly related to 111edo, but they differ on the mapping for 5, 7, and 13.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | absolute (¢) | +0.00 | +0.75 | -2.53 | -1.26 | +0.03 | -2.69 | -2.25 | -0.22 | -1.25 | -2.55 | +0.91 |
relative (%) | +0 | +14 | -47 | -23 | +1 | -50 | -42 | -4 | -23 | -47 | +17 | |
Steps (reduced) |
222 (0) |
352 (130) |
515 (71) |
623 (179) |
768 (102) |
821 (155) |
907 (19) |
943 (55) |
1004 (116) |
1078 (190) |
1100 (212) |