210edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 209edo 210edo 211edo →
Prime factorization 2 × 3 × 5 × 7
Step size 5.71429¢ 
Fifth 123\210 (702.857¢) (→41\70)
Semitones (A1:m2) 21:15 (120¢ : 85.71¢)
Consistency limit 9
Distinct consistency limit 9

210 equal divisions of the octave (abbreviated 210edo or 210ed2), also called 210-tone equal temperament (210tet) or 210 equal temperament (210et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 210 equal parts of about 5.71 ¢ each. Each step represents a frequency ratio of 21/210, or the 210th root of 2.

Theory

Since 210 = 3 × 70, 210edo shares its fifth with 70edo. It is consistent to the 9-odd-limit, but there is a sharp tendency in the lower harmonics. The equal temperament tempers out 67108864/66430125 (misty comma) and 30958682112/30517578125 (trisedodge comma) in the 5-limit; 3136/3125, 5120/5103, and 118098/117649 in the 7-limit.

Using the 210e val, which does the best, it tempers out 540/539, 4000/3993, 6912/6875, and 15488/15435 in the 11-limit; 351/350, 364/363, 1001/1000, 2197/2187, and 3584/3575 in the 13-limit. Using the patent val, it tempers out 176/175, 1375/1372, 8019/8000, and 41503/41472 in the 11-limit; 351/350, 352/351, 847/845, 2197/2187, and 16900/16807 in the 13-limit.

Odd harmonics

Approximation of odd harmonics in 210edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) +0.90 +2.26 +2.60 +1.80 -2.75 -0.53 -2.55 -2.10 -0.37 -2.21 +0.30
Relative (%) +15.8 +39.5 +45.5 +31.6 -48.1 -9.2 -44.7 -36.7 -6.5 -38.7 +5.2
Steps
(reduced)
333
(123)
488
(68)
590
(170)
666
(36)
726
(96)
777
(147)
820
(190)
858
(18)
892
(52)
922
(82)
950
(110)

Subsets and supersets

Since 210 factors into 2 × 3 × 5 × 7, 210edo has subset edos 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, and 105.

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3.5 [26 -12 -3, [19 10 -15 [210 333 488]] −0.5138 0.3987 6.98
2.3.5.7 3136/3125, 5120/5103, 118098/117649 [210 333 488 590]] −0.6170 0.3888 6.80

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
ratio*
Temperaments
3 123\210
(17\210)
702.86
(97.14)
3/2
(18/17)
Misty (210gh)
5 13\210 74.29 25/24 Countdown (210e)

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct