14L 7s
Jump to navigation
Jump to search
Scale structure
Step pattern
LLsLLsLLsLLsLLsLLsLLs
sLLsLLsLLsLLsLLsLLsLL
Equave
2/1 (1200.0¢)
Period
1\7 (171.4¢)
Generator size
Bright
1\21 to 1\14 (57.1¢ to 85.7¢)
Dark
1\14 to 2\21 (85.7¢ to 114.3¢)
TAMNAMS information
Descends from
7L 7s
Ancestor's step ratio range
1:1 to 2:1 (soft-of-basic)
Related MOS scales
Parent
7L 7s
Sister
7L 14s
Daughters
21L 14s, 14L 21s
Neutralized
7L 14s
2-Flought
35L 7s, 14L 28s
Equal tunings
Equalized (L:s = 1:1)
1\21 (57.1¢)
Supersoft (L:s = 4:3)
4\77 (62.3¢)
Soft (L:s = 3:2)
3\56 (64.3¢)
Semisoft (L:s = 5:3)
5\91 (65.9¢)
Basic (L:s = 2:1)
2\35 (68.6¢)
Semihard (L:s = 5:2)
5\84 (71.4¢)
Hard (L:s = 3:1)
3\49 (73.5¢)
Superhard (L:s = 4:1)
4\63 (76.2¢)
Collapsed (L:s = 1:0)
1\14 (85.7¢)
↖ 13L 6s | ↑ 14L 6s | 15L 6s ↗ |
← 13L 7s | 14L 7s | 15L 7s → |
↙ 13L 8s | ↓ 14L 8s | 15L 8s ↘ |
┌╥╥┬╥╥┬╥╥┬╥╥┬╥╥┬╥╥┬╥╥┬┐ │║║│║║│║║│║║│║║│║║│║║││ │││││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
sLLsLLsLLsLLsLLsLLsLL
14L 7s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 14 large steps and 7 small steps, with a period of 2 large steps and 1 small step that repeats every 171.4¢, or 7 times every octave. 14L 7s is a child scale of 7L 7s, expanding it by 7 tones. Generators that produce this scale range from 57.1¢ to 85.7¢, or from 85.7¢ to 114.3¢. Scales of the true MOS form, where every period is the same, are proper because there is only one small step per period.
Modes
UDP | Cyclic order |
Step pattern |
---|---|---|
14|0(7) | 1 | LLsLLsLLsLLsLLsLLsLLs |
7|7(7) | 2 | LsLLsLLsLLsLLsLLsLLsL |
0|14(7) | 3 | sLLsLLsLLsLLsLLsLLsLL |
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0¢ |
1-mosstep | Diminished 1-mosstep | d1ms | s | 0.0¢ to 57.1¢ |
Perfect 1-mosstep | P1ms | L | 57.1¢ to 85.7¢ | |
2-mosstep | Perfect 2-mosstep | P2ms | L + s | 85.7¢ to 114.3¢ |
Augmented 2-mosstep | A2ms | 2L | 114.3¢ to 171.4¢ | |
3-mosstep | Perfect 3-mosstep | P3ms | 2L + s | 171.4¢ |
4-mosstep | Diminished 4-mosstep | d4ms | 2L + 2s | 171.4¢ to 228.6¢ |
Perfect 4-mosstep | P4ms | 3L + s | 228.6¢ to 257.1¢ | |
5-mosstep | Perfect 5-mosstep | P5ms | 3L + 2s | 257.1¢ to 285.7¢ |
Augmented 5-mosstep | A5ms | 4L + s | 285.7¢ to 342.9¢ | |
6-mosstep | Perfect 6-mosstep | P6ms | 4L + 2s | 342.9¢ |
7-mosstep | Diminished 7-mosstep | d7ms | 4L + 3s | 342.9¢ to 400.0¢ |
Perfect 7-mosstep | P7ms | 5L + 2s | 400.0¢ to 428.6¢ | |
8-mosstep | Perfect 8-mosstep | P8ms | 5L + 3s | 428.6¢ to 457.1¢ |
Augmented 8-mosstep | A8ms | 6L + 2s | 457.1¢ to 514.3¢ | |
9-mosstep | Perfect 9-mosstep | P9ms | 6L + 3s | 514.3¢ |
10-mosstep | Diminished 10-mosstep | d10ms | 6L + 4s | 514.3¢ to 571.4¢ |
Perfect 10-mosstep | P10ms | 7L + 3s | 571.4¢ to 600.0¢ | |
11-mosstep | Perfect 11-mosstep | P11ms | 7L + 4s | 600.0¢ to 628.6¢ |
Augmented 11-mosstep | A11ms | 8L + 3s | 628.6¢ to 685.7¢ | |
12-mosstep | Perfect 12-mosstep | P12ms | 8L + 4s | 685.7¢ |
13-mosstep | Diminished 13-mosstep | d13ms | 8L + 5s | 685.7¢ to 742.9¢ |
Perfect 13-mosstep | P13ms | 9L + 4s | 742.9¢ to 771.4¢ | |
14-mosstep | Perfect 14-mosstep | P14ms | 9L + 5s | 771.4¢ to 800.0¢ |
Augmented 14-mosstep | A14ms | 10L + 4s | 800.0¢ to 857.1¢ | |
15-mosstep | Perfect 15-mosstep | P15ms | 10L + 5s | 857.1¢ |
16-mosstep | Diminished 16-mosstep | d16ms | 10L + 6s | 857.1¢ to 914.3¢ |
Perfect 16-mosstep | P16ms | 11L + 5s | 914.3¢ to 942.9¢ | |
17-mosstep | Perfect 17-mosstep | P17ms | 11L + 6s | 942.9¢ to 971.4¢ |
Augmented 17-mosstep | A17ms | 12L + 5s | 971.4¢ to 1028.6¢ | |
18-mosstep | Perfect 18-mosstep | P18ms | 12L + 6s | 1028.6¢ |
19-mosstep | Diminished 19-mosstep | d19ms | 12L + 7s | 1028.6¢ to 1085.7¢ |
Perfect 19-mosstep | P19ms | 13L + 6s | 1085.7¢ to 1114.3¢ | |
20-mosstep | Perfect 20-mosstep | P20ms | 13L + 7s | 1114.3¢ to 1142.9¢ |
Augmented 20-mosstep | A20ms | 14L + 6s | 1142.9¢ to 1200.0¢ | |
21-mosstep | Perfect 21-mosstep | P21ms | 14L + 7s | 1200.0¢ |
Scale tree
Generator(edo) | Cents | Step ratio | Comments(always proper) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
1\21 | 57.143 | 114.286 | 1:1 | 1.000 | Equalized 14L 7s | |||||
6\119 | 60.504 | 110.924 | 6:5 | 1.200 | ||||||
5\98 | 61.224 | 110.204 | 5:4 | 1.250 | ||||||
9\175 | 61.714 | 109.714 | 9:7 | 1.286 | ||||||
4\77 | 62.338 | 109.091 | 4:3 | 1.333 | Supersoft 14L 7s | |||||
11\210 | 62.857 | 108.571 | 11:8 | 1.375 | ||||||
7\133 | 63.158 | 108.271 | 7:5 | 1.400 | ||||||
10\189 | 63.492 | 107.937 | 10:7 | 1.429 | ||||||
3\56 | 64.286 | 107.143 | 3:2 | 1.500 | Soft 14L 7s | |||||
11\203 | 65.025 | 106.404 | 11:7 | 1.571 | ||||||
8\147 | 65.306 | 106.122 | 8:5 | 1.600 | ||||||
13\238 | 65.546 | 105.882 | 13:8 | 1.625 | ||||||
5\91 | 65.934 | 105.495 | 5:3 | 1.667 | Semisoft 14L 7s | |||||
12\217 | 66.359 | 105.069 | 12:7 | 1.714 | ||||||
7\126 | 66.667 | 104.762 | 7:4 | 1.750 | ||||||
9\161 | 67.081 | 104.348 | 9:5 | 1.800 | ||||||
2\35 | 68.571 | 102.857 | 2:1 | 2.000 | Basic 14L 7s | |||||
9\154 | 70.130 | 101.299 | 9:4 | 2.250 | ||||||
7\119 | 70.588 | 100.840 | 7:3 | 2.333 | ||||||
12\203 | 70.936 | 100.493 | 12:5 | 2.400 | ||||||
5\84 | 71.429 | 100.000 | 5:2 | 2.500 | Semihard 14L 7s | |||||
13\217 | 71.889 | 99.539 | 13:5 | 2.600 | ||||||
8\133 | 72.180 | 99.248 | 8:3 | 2.667 | ||||||
11\182 | 72.527 | 98.901 | 11:4 | 2.750 | ||||||
3\49 | 73.469 | 97.959 | 3:1 | 3.000 | Hard 14L 7s | |||||
10\161 | 74.534 | 96.894 | 10:3 | 3.333 | ||||||
7\112 | 75.000 | 96.429 | 7:2 | 3.500 | ||||||
11\175 | 75.429 | 96.000 | 11:3 | 3.667 | ||||||
4\63 | 76.190 | 95.238 | 4:1 | 4.000 | Superhard 14L 7s | |||||
9\140 | 77.143 | 94.286 | 9:2 | 4.500 | ||||||
5\77 | 77.922 | 93.506 | 5:1 | 5.000 | ||||||
6\91 | 79.121 | 92.308 | 6:1 | 6.000 | ||||||
1\14 | 85.714 | 85.714 | 1:0 | → ∞ | Collapsed 14L 7s |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |