161edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 160edo161edo162edo →
Prime factorization 7 × 23
Step size 7.45342¢ 
Fifth 94\161 (700.621¢)
Semitones (A1:m2) 14:13 (104.3¢ : 96.89¢)
Consistency limit 7
Distinct consistency limit 7

161 equal divisions of the octave (abbreviated 161edo or 161ed2), also called 161-tone equal temperament (161tet) or 161 equal temperament (161et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 161 equal parts of about 7.45 ¢ each. Each step represents a frequency ratio of 21/161, or the 161st root of 2.

Theory

161et tempers out the würschmidt comma, 393216/390625, in the 5-limit; 3136/3125, 6144/6125 and 2401/2400 in the 7-limit; 243/242, 441/440, 540/539 and 5632/5625 in the 11-limit; and 351/350, 847/845, 1001/1000, 1188/1183, 1575/1573 and 1716/1715 in the 13-limit. It serves as the optimal patent val for the mintone temperament in the 5-, 7-, 11- and 13-limit.

Prime harmonics

In the range of edos from 100 to 200, 161edo is notable as being low in 29-limit relative error.

Approximation of prime harmonics in 161edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 -1.33 +1.26 +0.12 +0.23 +1.71 -0.61 +0.62 -2.19 -1.01 +2.79
Relative (%) +0.0 -17.9 +17.0 +1.6 +3.2 +22.9 -8.2 +8.4 -29.3 -13.5 +37.4
Steps
(reduced)
161
(0)
255
(94)
374
(52)
452
(130)
557
(74)
596
(113)
658
(14)
684
(40)
728
(84)
782
(138)
798
(154)

Subsets and supersets

Since 161 factors into 7 × 23, 161edo contains 7edo and 23edo as its subsets.

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [-255 161 [161 255]] +0.421 0.421 5.65
2.3.5 393216/390625, [-17 21 -7 [161 255 374]] +0.099 0.570 7.65
2.3.5.7 2401/2400, 3136/3125, 177147/175000 [161 255 374 452]] +0.064 0.498 6.67
2.3.5.7.11 243/242, 441/440, 3136/3125, 35937/35840 [161 255 374 452 557]] +0.037 0.448 6.01
2.3.5.7.11.13 243/242, 351/350, 441/440, 847/845, 3136/3125 [161 255 374 452 557 596]] −0.046 0.449 6.03
2.3.5.7.11.13.17 243/242, 351/350, 441/440, 561/560, 847/845, 1089/1088 [161 255 374 452 557 596 658]] −0.018 0.422 5.66
2.3.5.7.11.13.17.19 243/242, 324/323, 351/350, 441/440, 456/455, 495/494, 513/512 [161 255 374 452 557 596 658 684]] −0.034 0.397 5.32
  • 161et has a lower absolute error than any previous equal temperaments in the 19-limit, even though it is inconsistent in the corresponding odd limit. The same subgroup is only better tuned by 183et.

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
ratio*
Temperaments
1 15\161 111.80 16/15 Vavoom
1 16\161 119.25 15/14 Septidiasemi
1 17\161 126.71 14/13 Mowglic
1 25\161 186.34 10/9 Mintone
1 26\161 193.79 28/25 Hemiwürschmidt
1 38\161 283.23 33/28 Neominor (161f)
1 52\161 387.58 5/4 Würschmidt (5-limit)
1 79\161 588.82 45/32 Aufo
7 67\161
(2\161)
499.38
(14.91)
4/3
(81/80)
Absurdity

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct